小哆啦解题记:螺旋矩阵
小哆啦开始刷力扣的第二十八天
54. 螺旋矩阵 - 力扣(LeetCode)
🌪️ 一场螺旋风暴的较量
在一个阳光明媚的午后,小哆啦悠闲地坐在窗边啃着曲奇,突然,一道神秘的光芒闪过,小智从代码的虚空中出现。
“哆啦,我今天带来了一个特别有意思的题目!”小智眨着眼睛说。
“哦?是什么?”小哆啦眯起眼睛,嘴角还沾着饼干屑。
“螺旋矩阵! ”小智一挥手,白板上赫然出现了一道经典题目:
给你一个
m行n列的矩阵matrix,要求你按照顺时针螺旋顺序,返回矩阵中的所有元素。
示例:
输入:matrix = [[1,2,3],[4,5,6],[7,8,9]]
输出:[1,2,3,6,9,8,7,4,5]
“这也太简单了吧!”小哆啦信心满满地说,“让我来个暴力解法!沿着顺时针走一圈不就好了嘛!”
🚀 第一回合:暴力解法上线
小哆啦撸起袖子,啪啪敲起键盘,写下了第一个版本:
function spiralOrder(matrix: number[][]): number[] {if (matrix.length === 0 || matrix[0].length === 0) return [];const m = matrix.length;const n = matrix[0].length;const result: number[] = [];const visited: boolean[][] = Array.from({ length: m }, () => Array(n).fill(false));let direction = 0; // 0: 右, 1: 下, 2: 左, 3: 上let row = 0, col = 0;const directions = [[0, 1], [1, 0], [0, -1], [-1, 0]];for (let i = 0; i < m * n; i++) {result.push(matrix[row][col]);visited[row][col] = true;const nextRow = row + directions[direction][0];const nextCol = col + directions[direction][1];if (nextRow >= 0 && nextRow < m && nextCol >= 0 && nextCol < n && !visited[nextRow][nextCol]) {row = nextRow;col = nextCol;} else {direction = (direction + 1) % 4;row += directions[direction][0];col += directions[direction][1];}}return result;
}
小哆啦按下运行键,屏幕上果然输出了**[1,2,3,6,9,8,7,4,5]**,结果完全正确!
时间复杂度: O(m * n)
空间复杂度: O(m * n)(额外的 visited 数组)
“哈哈哈,我是不是很厉害!”小哆啦得意地转头看向小智。
🌟 小智的灵魂拷问
小智推了推眼镜,嘴角勾起一抹淡淡的微笑:“哆啦,你确定这就是最优解吗?”
小哆啦一愣:“怎么不是?每个元素都访问了一遍,没多走一步啊!”
小智轻敲白板:“可是……你额外用了一个 visited 数组,空间复杂度已经飙到 O(m * n) 了,这不等于背着一大堆行李去爬山吗?”
小哆啦嘴角抽了抽:“那……那怎么改?”
⚡ 第二回合:边界收缩法登场
“我们可以巧妙利用边界收缩法,”小智耐心地解释道,“动态调整上下左右的边界来控制遍历路径,而不是额外用空间去标记访问过的格子。”
小哆啦听完恍然大悟:“等于说,我们把访问过的路径‘挤压’成边界,把矩阵变成一个收缩的战场!”
于是,在小智的引导下,小哆啦写出了第二版代码:
function spiralOrderOptimized(matrix: number[][]): number[] {if (matrix.length === 0 || matrix[0].length === 0) return [];let top = 0, bottom = matrix.length - 1;let left = 0, right = matrix[0].length - 1;const result: number[] = [];while (top <= bottom && left <= right) {for (let i = left; i <= right; i++) result.push(matrix[top][i]); // 从左到右top++;for (let i = top; i <= bottom; i++) result.push(matrix[i][right]); // 从上到下right--;if (top <= bottom) { // 防止重复遍历for (let i = right; i >= left; i--) result.push(matrix[bottom][i]); // 从右到左bottom--;}if (left <= right) { // 防止重复遍历for (let i = bottom; i >= top; i--) result.push(matrix[i][left]); // 从下到上left++;}}return result;
}
时间复杂度: O(m * n)
空间复杂度: O(1)
🎯 解法对比
| 解法 | 时间复杂度 | 空间复杂度 | 思路 |
|---|---|---|---|
| 暴力解法 | O(m * n) | O(m * n) | 模拟遍历,记录访问过的路径 |
| 边界收缩法 | O(m * n) | O(1) | 动态调整边界,避免额外空间 |
🎬 最终总结:
小哆啦从初出茅庐的暴力解法,到小智提点后的边界收缩法,这不仅是一次代码的升级,更是一场算法思维的蜕变。螺旋矩阵,看似只是绕圈圈,但真正高效的解法,藏在对边界和路径的精准把控之中。
“下次再有这种题目,我一定一眼就用边界收缩法!”小哆啦挥着拳头说道。
“算法的成长,就是不断突破自己思维边界的过程。”小智微微一笑。
如果你也有更妙的思路,欢迎在评论区和我们一起探讨!✨
相关文章:
小哆啦解题记:螺旋矩阵
小哆啦开始刷力扣的第二十八天 54. 螺旋矩阵 - 力扣(LeetCode) 🌪️ 一场螺旋风暴的较量 在一个阳光明媚的午后,小哆啦悠闲地坐在窗边啃着曲奇,突然,一道神秘的光芒闪过,小智从代码的虚空中出现…...
【C#】委托是什么
在 C# 中,委托(Delegate) 是一种类型安全的函数指针,可以将方法作为参数传递或者保存方法的引用。下面详细介绍一下委托的相关概念和用法: 1. 基本概念 类型安全:委托在声明时会指定方法的返回类型和参数…...
[Lc(2)滑动窗口_1] 长度最小的数组 | 无重复字符的最长子串 | 最大连续1的个数 III | 将 x 减到 0 的最小操作数
目录 1. 长度最小的字数组 题解 代码 ⭕2.无重复字符的最长子串 题解 代码 3.最大连续1的个数 III 题解 代码 4.将 x 减到 0 的最小操作数 题解 代码 1. 长度最小的字数组 题目链接:209.长度最小的字数组 题目分析: 给定一个含有 n 个 正整数 的数组…...
迷你世界脚本玩家接口:Player
玩家接口:Player 彼得兔 更新时间: 2024-07-28 17:49:05 继承自 Actor 具体函数名及描述如下: 序号 函数名 函数描述 1 getAttr(...) 玩家属性获取 2 setAttr(...) 玩家属性设置 3 getHostUin(...) 获取房主uin 4 isMainPlayer(...) …...
三、0-1搭建springboot+vue3前后端分离-springboot整合mybatis plus 之本地安装mysql
一、安装mysql: 官网下载:https://dev.mysql.com/downloads/mysql/?spm5176.28103460.0.0.40f75d27Stx4Xj 网盘分享:http://链接: https://pan.baidu.com/s/1mS_-VxrKAeRL3utBvD64gg?pwd6666 提取码: 6666 复制这段内容后打开百度网盘手机…...
市场趋势解析与交易策略优化
市场趋势解析与交易策略优化 在市场环境不断变化的情况下,理解市场趋势并优化交易策略是交易者稳健发展的关键。通过科学的方法识别市场动向,结合数据分析优化交易方案,可以提高交易效率并降低风险。本文将探讨趋势分析的要点,并介…...
Spring Boot 常用注解全解析:从核心到进阶的实践指南
目录 引言:为什么注解是Spring Boot开发者的“战略武器”? 一、核心启动注解 1.1 应用启动三剑客 二、Web开发注解 2.1 控制器层注解 三、依赖注入注解 3.1 依赖管理矩阵 四、数据访问注解 4.1 JPA核心注解 五、配置管理注解 5.1 配置绑定注解…...
如何优化FFmpeg拉流性能及避坑指南
FFmpeg作为流媒体处理的核心工具,其拉流性能直接影响直播/点播体验。本文从协议优化、硬件加速、网络策略三大维度切入,结合实战案例与高频踩坑点,助你突破性能瓶颈! 一、性能优化进阶:从协议到硬件的全链路调优 协议选…...
基础dp——动态规划
目录 一、什么是动态规划? 二、动态规划的使用步骤 1.状态表示 2.状态转移方程 3.初始化 4.填表顺序 5.返回值 三、试题讲解 1.最小花费爬楼梯 2.下降路径最小和 3.解码方法 一、什么是动态规划? 动态规划(Dynamic Programming&…...
通过微步API接口对单个IP进行查询
import requests import json# 微步API的URL和你的API密钥 API_URL "https://api.threatbook.cn/v3/ip/query" API_KEY "***" # 替换为你的微步API密钥 def query_threatbook(ip):"""查询微步API接口,判断IP是否为可疑"…...
LLM实践——DeepSeek技术报告学习(含实现逻辑梳理)
目录 一些基本概念:deepseek-r1-zerodeepseek-R1deepseek-R1 distill model: DeepSeek官网:https://www.deepseek.com/ 一些基本概念: post-training:旨在优化预训练模型的特定能力,包括任务适配性、安…...
Autojs无线连接vscode方法
1.获得电脑的IP 在电脑的CMD界面输入 ipconfig 然后找到ipv4的那一行,后面的即是你的电脑IP地址 2.打开vscode的autojs服务 安装autojs插件 在vscode界面按下ctrlshiftp 输入autojs 找到 点击 之后打开手机上的autojs 之后输入刚刚电脑上的地址 可以看到vsc…...
第一节:基于Winform框架的串口助手小项目---基础控件使用《C#编程》
本人于2025年3月2号学习C#编程,要学会一门编程语言,一定要有一个或多个项目的经验才能对着这门语言有深入的了解,为了深入了解和记录学习C#的学习过程,此文章作为足迹以此记录,为后期巩固学习以及参考奠定基础。内容涉…...
小红书湖仓架构的跃迁之路
作者:李鹏霖(丁典),小红书-研发工程师,StarRocks Contributor & Apache Impala Committer 本文整理自小红书工程师在 StarRocks 年度峰会上的分享,介绍了小红书自助分析平台中,StarRocks 与 Iceberg 结合后&#x…...
pytorch高可用的设计策略和集成放大各自功能
在使用 PyTorch 编写模型时,为确保模型具备高可用性,可从模型设计、代码质量、训练过程、部署等多个方面采取相应的方法,以下为你详细介绍: 模型设计层面 模块化设计 实现方式:将模型拆分成多个小的、独立的模块,每个模块负责特定的功能。例如,在一个图像分类模型中,可…...
神经网络前向微分和后向微分区别
1. 计算顺序 前向微分(前向模式) 从输入到输出逐层计算:沿计算图的正向顺序(输入层 → 输出层),同时计算函数值和导数。 每一步同步更新导数:每个中间变量的导数随值一起计算,例如&…...
Android 创建一个全局通用的ViewModel
(推荐)使用ViewModelStore 代码示例: class MyApplication : Application(), ViewModelStoreOwner {private val mViewModelStore ViewModelStore()override fun onCreate() {super.onCreate()}override val viewModelStore: ViewModelSto…...
windows 利用nvm 管理node.js 2025最新版
1.首先在下载nvm 下载链接 2. 下载最新版本的nvm 3. 同意协议 注意:选择安装路径 之后一直下一步即可 可以取消勾选 open with Powershell 勾选后它会自动打开Powershell 这里选用cmd 输入以下命令查看是否安装成功 nvm version 查看已经安装的版本 我之前自…...
基于物联网技术的电动车防盗系统设计(论文+源码)
1总体设计 本课题为基于物联网技术的电动车防盗系统,在此将整个系统架构设计如图2.1所示,其采用STM32F103单片机为控制器,通过NEO-6M实现GPS定位功能,通过红外传感器检测电瓶是否离开位,通过Air202 NBIOT模块将当前的数…...
run方法执行过程分析
文章目录 run方法核心流程SpringApplicationRunListener监听器监听器的配置与加载SpringApplicationRunListener源码解析实现类EventPublishingRunListener 初始化ApplicationArguments初始化ConfigurableEnvironment获取或创建环境配置环境 打印BannerSpring应用上下文的创建S…...
利用最小二乘法找圆心和半径
#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造,完美适配AGV和无人叉车。同时,集成以太网与语音合成技术,为各类高级系统(如MES、调度系统、库位管理、立库等)提供高效便捷的语音交互体验。 L…...
UDP(Echoserver)
网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法:netstat [选项] 功能:查看网络状态 常用选项: n 拒绝显示别名&#…...
电脑插入多块移动硬盘后经常出现卡顿和蓝屏
当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时,可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案: 1. 检查电源供电问题 问题原因:多块移动硬盘同时运行可能导致USB接口供电不足&#x…...
《基于Apache Flink的流处理》笔记
思维导图 1-3 章 4-7章 8-11 章 参考资料 源码: https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...
微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据
微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列,以便知晓哪些列包含有价值的数据,…...
HDFS分布式存储 zookeeper
hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架,允许使用简单的变成模型跨计算机对大型集群进行分布式处理(1.海量的数据存储 2.海量数据的计算)Hadoop核心组件 hdfs(分布式文件存储系统)&a…...
CRMEB 中 PHP 短信扩展开发:涵盖一号通、阿里云、腾讯云、创蓝
目前已有一号通短信、阿里云短信、腾讯云短信扩展 扩展入口文件 文件目录 crmeb\services\sms\Sms.php 默认驱动类型为:一号通 namespace crmeb\services\sms;use crmeb\basic\BaseManager; use crmeb\services\AccessTokenServeService; use crmeb\services\sms\…...
群晖NAS如何在虚拟机创建飞牛NAS
套件中心下载安装Virtual Machine Manager 创建虚拟机 配置虚拟机 飞牛官网下载 https://iso.liveupdate.fnnas.com/x86_64/trim/fnos-0.9.2-863.iso 群晖NAS如何在虚拟机创建飞牛NAS - 个人信息分享...
Vite中定义@软链接
在webpack中可以直接通过符号表示src路径,但是vite中默认不可以。 如何实现: vite中提供了resolve.alias:通过别名在指向一个具体的路径 在vite.config.js中 import { join } from pathexport default defineConfig({plugins: [vue()],//…...
