Elasticsearch 2025/3/7
高性能分布式搜索引擎。
数据库模糊搜索比较慢,但用搜索引擎快多了。
下面是一些搜索引擎排名
Lucene是一个Java语言的搜索引擎类库(一个工具包),apache公司的顶级项目。
优势:易扩展、高性能(基于倒排索引)
elasticsearch优势:
支持分布式,可水平扩展
提供Restful接口,可被任何语言调用
elasticsearch随着技术发展越来越完善,已经不是一个孤立的技术了,有一套完整的技术栈,简称ELK(kibana、Logstash、Beats),被广泛应用在日志数据分析、实时监控等领域。
安装ES
推荐Docker命令一键安装。
安装Kibana
一个图形界面的工具,会帮助我们连接ES,提供图形化的操作,还能自动补全。
推荐Docker命令一键安装。
Kibana提供了一个工具Dev tool,它可以帮助我们向ES发送HTTP请求,而且自带提示!!!
倒排索引
传统MySQL关系数据库只会给文档建立id索引。
而elasticsearch采用倒排索引:不仅会给文档建立id索引,还会给拆开的词条建立索引。
- 文档:每条数据就是一个文档
- 词条:文档按照语义分成的词语
会给词条建一个索引,将来根据词条来检索速度会非常快。
以下图为例,其实我们搜了两次,第一次拿词条来词条列表找,第二次拿着找到的文档id到文档列表里找文档。而传统关系数据库,只能全表扫描。
正向索引先去找文档,看文档里是否包含词条。
倒排索引先去找词条,得到文档id,再去找文档。(要经历两次检索)
IK分词器
英文分词很简单,因为单词间有空格。仲文分词必须按语义进行分析。
把这个插件(ik)放到插件目录里。
analyzer可以中文分词的:ik_smart、ik_max_word
IK分词器允许词典扩展。
ES核心概念
叫索引可能会混淆,我们通常把他理解成索引库。因为MySQL里给id加的那个也叫索引。索引和数据库里的表table的概念有点接近。要保证json文档他们的结构一致、数据类型一致,叫做映射。
下图是ES和MySQL数据库一些概念的对比👇
Mapping映射属性
Mapping映射类似于建表
keyword不可拆分的词
索引库操作
keyword不可拆,text可拆
在elasticsearch里,不允许对索引库做修改操作(指不能对已有的索引库字段做修改,但允许添加新的字段)。
文档操作
上节课学完索引库的各种操作,相当于在MySQL里去创建表,表有了之后,我们要学着操作数据。在索引库里,我们操作的是文档。
文档CRUD
完全符合Restful风格
全量修改,改的话全部都要改。
增量/局部修改,修改指定的。
批量处理
一个一个文档处理效率太低,这次学习批量处理。
JavaRestClient
ES给我们提供的java客户端,JavaRestClient。
这套客户端就是帮我们向restful接口发请求的。
客户端初始化
步骤:引依赖->对SpringBoot原有默认的ES版本进行覆盖->初始化RestHighLevelClient
例:
商品表Mapping映射
上节课已经完成es的java客户端的初始化,之后的几节课我们将学习如何利用这个客户端实现索引库及文档的各种操作。
创建商品索引库首先要确定商品的Mapping映射。
索引库操作
文档操作
上节课学习es的java客户端操作索引库的各种API,并创建了一个索引库。有了索引库我们就可以向里面写入文档,进行文档操作了。
source 源
request.source请求参数里的数据直接用数据库里的。但是数据库里的和索引库的字段不完全一样,我们要怎样保证他们一样呢?
首先定义一个实体,这个索引要和索引库的mapping映射结构一致。
直接复制一份po,然后把其中不需要的属性删掉。(简单无需技术含量)
根据id查数据库,查到数据库数据转化为文档数据,用到糊涂工具包BeanUtil.copyProperties(item,ItemDoc.class)拷贝数据。
得到的文档数据放到source方法请求参数必须是JSON,用工具类JSONUtil转换
新增文档操作如上,接下来我们学习文档其他增删改查的API。
发送请求结果获取到的request对象里面是完整的Json数据
而解析结果就是获取到的request对象里的source
批处理
一次只能操作一个文档效率太低,es提供了这种批处理的restful接口,之前我们是用ADP请求的方式去调用的,这回我们学习如何利用java客户端去做批处理。
一次全查可能会爆,所以下面的例子采用分页查询。 (使用Page)
结果通过record取出,做一个判断,是否没查到任何数据(一个健壮性判断)。
没查到数据就不用往下走,直接return;查到了再往索引库里写。
参数id不是写死的,而是要改成获取到的request遍历的item.id(int型要改成String)
source里的要变成JSON,而且要用我们改好的po实体类Itemdoc,而不是item。
while用来翻页的。
DSL查询
前面已经学习了es索引库和文档的各种增删改查操作了,其中我们查询文档都是根据id查询的,但是这种查询方式并不能满足我们所有的业务场景的需求,我们实际项目中不一定是根据id搜索的,他的搜索条件往往比较复杂。这时我们就需要一种新的查询方式,ES就给我们提供了一个DSL的查询,来实现这种复杂条件的查询。
快速入门
因为是查询,所以这里是GET。
GET /索引库名/_search
match_all{}:匹配/查询所有,{}里面如果啥也没有,就是没有查询条件,那就查所有
es内部默认有限制,单次允许查询最大数据不能超过1万
gte:>= 大于等于
hits:查询命中的数据
叶子查询
全文检索查询就是之前的倒排索引查询。
精确搜索,输入的搜索条件,都是相对简单不可分割的词。
rande范围,term直接比较字段值。
下面以全文检索为例:
符合查询
排序和分页
高亮显示
相关文章:

Elasticsearch 2025/3/7
高性能分布式搜索引擎。 数据库模糊搜索比较慢,但用搜索引擎快多了。 下面是一些搜索引擎排名 Lucene是一个Java语言的搜索引擎类库(一个工具包),apache公司的顶级项目。 优势:易扩展、高性能(基于倒排索引…...

发行基础:热销商品榜单
转载自官方文件 ------------------ 热销商品榜单 Steam 在整个商店范围内有各种热销商品榜单,最醒目的莫过于 Steam 主页上的榜单了。 您也可以在浏览单个标签、主题、类型时找到针对某个游戏类别的热销商品榜单。 主页热销商品榜单 该榜单出现在 Steam 主页上…...

实战案例分享:Android WLAN Hal层移植(MTK+QCA6696)
本文将详细介绍基于MTK平台,适配高通(Qualcomm)QCA6696芯片的Android WLAN HAL层的移植过程,包括HIDL接口定义、Wi-Fi驱动移植以及wpa_supplicant适配过程,涵盖STA与AP模式的常见问题与解决方法。 1. HIDL接口简介 HID…...

物联网系统搭建
实验项目名称 构建物联网系统 实验目的 掌握物联网系统的一般构建方法。 实验要求: 1.构建物联网系统,实现前后端的交互。 实验内容: CS模式MQTT(不带数据分析处理功能) 实现智能设备与应用客户端的交…...
微前端框架 Qiankun 的应用及问题分析
一、Qiankun 的核心应用场景与优势 多技术栈共存与灵活集成 Qiankun 支持主应用与子应用使用不同技术栈(如 Vue、React、Angular 等),通过 HTML Entry 方式接入子应用,无需深度改造子应用即可实现集成,降低了技术迁移成…...

设计模式-结构型模式-适配器模式
概述 适配器模式 : Adapter Pattern 是一种结构型设计模式. 作用 : 使得原本由于接口不兼容而不能一起工作的那些类可以一起工作。 实现思路 : 适配器模式通过将一个类的接口转换成客户希望的另外一个接口来实现这一点。 这里的“接口”指的是类所提供的…...
6. 机器人实现远程遥控(具身智能机器人套件)
1. 启动控制脚本 远程作到 Raspberry Pi 中,并运行以下脚本: conda activate lerobotpython lerobot/scripts/control_robot.py \--robot.typelekiwi \--control.typeremote_robot登录笔记本电脑上,同时运行以下脚本: conda ac…...

多模态知识图谱融合
1.Knowledge Graphs Meet Multi-Modal Learning: A Comprehensive Survey 1.1多模态实体对齐 1.2多模态实体链接 研究进展&#...
windows 平台如何点击网页上的url ,会打开远程桌面连接服务器
你可以使用自定义协议方案(Protocol Scheme)实现网页上点击URL后自动启动远程桌面连接(mstsc),参考你提供的C代码思路,如下实现: 第一步:注册自定义协议 使用类似openmstsc://协议…...

基于Spark的热门动漫推荐数据分析与可视化系统的设计与实现(采用Python语言Django框架,Hadoop,spider爬虫等技术实现)
基于Hadoop的热门动漫推荐数据分析与可视化系统 基于Django的热门动漫推荐数据分析与可视化系统 1. 开发工具和实现技术 Pycharm, Python3.7,Django框架,Hadoop,Spark,Hive,spider爬虫(爬取动漫之家的动…...
8. 机器人模型训练与评估(具身智能机器人套件)
1. 训练 使用python lerobot/scripts/train.py可以进行机器人控制模型训练,一般需要几个小时,可以在outputs/train/act_lekiwi_test/checkpoints查看锚点数据,下面为一组示例参数: python lerobot/scripts/train.py \--dataset.…...

计算机网络-服务器模型
一.服务器模型 1.支持多客户端访问 //单循环服务器 socket bind listen while(1) { accept while(1) { recv/send } } close 注:该模式remvform为阻塞态,服务器将等待接收数据 2..支持多客户端同时访问 (并发能力) socket…...

DeepSeek大模型 —— 全维度技术解析
DeepSeek大模型 —— 全维度技术解析 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,可以分享一下给大家。点击跳转到网站。 https://www.captainbed.cn/ccc 文章目录 DeepSeek大模型 —— 全维度技术解析一、模型架构全景解析1…...

OSPF网络类型:NBMA与P2MP
一、NBMA网络 NBMA网络的特点 连接方式: 支持多台设备连接到同一个网络段,但网络本身不支持广播或组播。典型例子:帧中继、ATM。 DR/BDR选举: 由于网络不支持广播,OSPF需要手动配置邻居。 仍然会选举DR(…...

大数定律详解
前言 本文隶属于专栏《机器学习数学通关指南》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢! 本专栏目录结构和参考文献请见《机器学习数学通关指南》 正文 🌟 一、大数定律的…...
2025生物科技革命:AI驱动的基因编辑与合成生物学新纪元
一、基因编辑技术的精准化突破 第三代基因编辑工具CRISPR-Cas12f的研发成功,将编辑精度提升至0.1碱基对级别。中国科学院团队利用该技术在灵长类动物模型中修复遗传性视网膜病变基因,治愈率达到92%。对比传统CRISPR-Cas9技术,新型编辑器脱靶…...

百度SEO关键词布局从堆砌到场景化的转型指南
百度SEO关键词布局:从“堆砌”到“场景化”的转型指南 引言 在搜索引擎优化(SEO)领域,关键词布局一直是核心策略之一。然而,随着搜索引擎算法的不断升级和用户需求的多样化,传统的“关键词堆砌”策略已经…...
macOS常用网络管理配置命令
目录 **1. ifconfig:查看和配置网络接口****2. networksetup:管理系统网络配置****3. ping:测试网络连通性****4. traceroute:跟踪数据包路径****5. nslookup/dig:DNS 查询****6. netstat:查看网络连接和统…...
Selenium 中 ActionChains 支持的鼠标和键盘操作设置及最佳实践
Selenium 中 ActionChains 支持的鼠标和键盘操作设置及最佳实践 一、引言 在使用 Selenium 进行自动化测试时,ActionChains 类提供了强大的功能,用于模拟鼠标和键盘的各种操作。通过 ActionChains,可以实现复杂的用户交互,如鼠标…...

【五.LangChain技术与应用】【31.LangChain ReAct Agent:反应式智能代理的实现】
一、ReAct Agent是啥?为什么说它比「普通AI」聪明? 想象一下,你让ChatGPT查快递物流,它可能直接编个假单号糊弄你。但换成ReAct Agent,它会先推理(Reasoning)需要调用哪个接口,再行动(Action)查询真实数据——这就是ReAct的核心:让AI学会「动脑子」再动手。 举个真…...
【网络】每天掌握一个Linux命令 - iftop
在Linux系统中,iftop是网络管理的得力助手,能实时监控网络流量、连接情况等,帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...

【WiFi帧结构】
文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成:MAC头部frame bodyFCS,其中MAC是固定格式的,frame body是可变长度。 MAC头部有frame control,duration,address1,address2,addre…...
PHP和Node.js哪个更爽?
先说结论,rust完胜。 php:laravel,swoole,webman,最开始在苏宁的时候写了几年php,当时觉得php真的是世界上最好的语言,因为当初活在舒适圈里,不愿意跳出来,就好比当初活在…...

CentOS下的分布式内存计算Spark环境部署
一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架,相比 MapReduce 具有以下核心优势: 内存计算:数据可常驻内存,迭代计算性能提升 10-100 倍(文档段落:3-79…...

华为OD机试-食堂供餐-二分法
import java.util.Arrays; import java.util.Scanner;public class DemoTest3 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseint a in.nextIn…...
数据链路层的主要功能是什么
数据链路层(OSI模型第2层)的核心功能是在相邻网络节点(如交换机、主机)间提供可靠的数据帧传输服务,主要职责包括: 🔑 核心功能详解: 帧封装与解封装 封装: 将网络层下发…...
浅谈不同二分算法的查找情况
二分算法原理比较简单,但是实际的算法模板却有很多,这一切都源于二分查找问题中的复杂情况和二分算法的边界处理,以下是博主对一些二分算法查找的情况分析。 需要说明的是,以下二分算法都是基于有序序列为升序有序的情况…...
C++八股 —— 单例模式
文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全(Thread Safety) 线程安全是指在多线程环境下,某个函数、类或代码片段能够被多个线程同时调用时,仍能保证数据的一致性和逻辑的正确性…...
LOOI机器人的技术实现解析:从手势识别到边缘检测
LOOI机器人作为一款创新的AI硬件产品,通过将智能手机转变为具有情感交互能力的桌面机器人,展示了前沿AI技术与传统硬件设计的完美结合。作为AI与玩具领域的专家,我将全面解析LOOI的技术实现架构,特别是其手势识别、物体识别和环境…...

rm视觉学习1-自瞄部分
首先先感谢中南大学的开源,提供了很全面的思路,减少了很多基础性的开发研究 我看的阅读的是中南大学FYT战队开源视觉代码 链接:https://github.com/CSU-FYT-Vision/FYT2024_vision.git 1.框架: 代码框架结构:readme有…...