当前位置: 首页 > news >正文

扩散模型中三种加入条件的方式:Vanilla Guidance,Classifier Guidance 以及 Classifier-Free Guidance

扩散模型主要包括两个过程:前向扩散过程和反向去噪过程。前向过程逐渐给数据添加噪声,直到数据变成纯噪声;反向过程则是学习如何从噪声中逐步恢复出原始数据。在生成过程中,模型从一个随机噪声开始,通过多次迭代去噪,最终生成有意义的数据,比如图像。这时候,如果需要生成特定类别的数据,比如生成猫的图像而不是狗的,就需要加入条件引导,控制生成的方向。这就是条件扩散模型的作用。


Vanilla Guidance、Classifier Guidance和Classifier-Free Guidance,是在反向过程中如何利用条件信息的不同策略:

  1. Vanilla Guidance: 指的是最基本的条件加入方式,也就是在模型训练时直接将条件信息(比如类别标签,时间标签)作为输入的一部分。例如,在UNet的结构中,除了输入噪声图像和时间步信息外,还会将条件向量拼接或嵌入到网络中,让模型在训练时学会根据条件生成对应的图像。这种方法可能的问题是需要大量带标签的数据,并且在推理时可以通过替换不同的条件来生成不同类别的图像。不过,可能控制的效果有限,或者需要更多的调整。
  2. Classifier Guidance :这个方法是需要预训练一个分类器,在反向过程中利用分类器的梯度来调整生成的方向,使得生成的图像符合给定的条件。具体来说,在每一步去噪的时候,不仅根据扩散模型的预测去噪,还会计算分类器对当前中间图像的梯度,将梯度信息加入到噪声预测中,从而使得生成的图像在分类器看来属于目标类别。这种方法的好处是不需要在扩散模型本身中加入条件,而是通过外部分类器来引导生成,可能更加灵活。不过缺点是需要额外训练分类器,并且分类器需要在带噪声的数据上进行训练,因为扩散过程的中间结果是有噪声的,可能影响分类器的准确性。
  3. Classifier-Free Guidance :不需要单独的分类器,而是通过训练时的条件和非条件生成来隐式地引导生成方向。具体来说,可能是在训练时随机地忽略条件信息(比如以一定概率将条件置空),让模型同时学习有条件生成和无条件生成。在推理时,通过调整条件和非条件预测的权重,来增强条件的影响。比如,将条件预测的结果和无条件预测的结果进行线性组合,从而在不需要外部分类器的情况下实现更强的条件控制。这种方法结合了两者的优点,既不需要额外的分类器,又能有效利用条件信息,但可能需要更大的模型或更复杂的训练策略。

举个例子,假设我要生成一个带有“猫”标签的图像。
Vanilla Guidance在训练时将“猫”的标签编码后输入到模型中,让模型在生成过程中始终考虑这个条件。
Classifier Guidance则是在生成过程中,每一步都使用一个已经训练好的猫分类器,对中间图像计算梯度,调整生成方向。
而Classifier-Free Guidance则是在训练时,有时告诉模型生成猫,有时不告诉任何条件,然后在推理时通过调整条件和非条件的权重来加强条件的影响,比如让条件预测的权重更大,从而生成更符合要求的猫的图像。

总结:

  • Vanilla Guidance:在模型训练时将条件信息作为输入,直接训练条件生成模型。生成时通过输入不同的条件来控制输出。但可能缺乏对条件的强引导,导致控制不够精准。
  • Classifier Guidance:在反向过程中使用预训练的分类器梯度来调整生成方向,强化条件信号。需要额外训练分类器,并且分类器需要适应带噪声的输入,但能够更精确地控制生成结果。
  • Classifier-Free Guidance:在训练时同时学习有条件和无条件生成,推理时通过组合两者的预测来增强条件效果。不需要外部分类器,通过模型自身的条件和非条件预测差异来引导生成,灵活性高,效果较好,但训练时需要更多的策略(如随机丢弃条件)。

1. Vanilla Guidance(朴素引导)

  • 核心思想:在训练时直接将条件信息(如类别标签、文本描述)作为模型输入的一部分,通过端到端学习条件生成。
  • 实现方式
    • 条件信息(如类别嵌入或文本编码)通过拼接、相加或多层感知机(MLP)注入到模型的每一层(如UNet的残差块中)。
    • 模型直接学习基于条件的噪声预测,无需额外引导机制。
  • 优点
    • 实现简单,直接融入模型结构。
    • 推理时通过替换条件输入灵活控制生成内容。
  • 缺点
    • 条件控制较弱,尤其在复杂任务(如细粒度文本生成图像)中可能生成与条件无关的结果。
    • 依赖大量带标注数据,且条件信息可能未被充分建模。
  • 典型应用:早期的条件扩散模型(如DDPM的类别条件生成)。

2. Classifier Guidance(分类器引导)

  • 核心思想:利用预训练的分类器梯度,在反向去噪过程中调整生成方向,使输出符合目标条件。
  • 实现方式
    • 训练阶段:扩散模型可无条件训练,同时额外训练一个噪声鲁棒的分类器(适应各时间步的噪声数据)。
    • 推理阶段
      1. 在每一步去噪时,计算分类器对中间图像的条件概率梯度。
      2. 将梯度信息加权后注入噪声预测:
        ϵ θ ( x t , t ) → ϵ θ ( x t , t ) + s ⋅ ∇ x t log ⁡ p ϕ ( y ∣ x t ) \epsilon_\theta(x_t, t) \rightarrow \epsilon_\theta(x_t, t) + s \cdot \nabla_{x_t} \log p_\phi(y \mid x_t) ϵθ(xt,t)ϵθ(xt,t)+sxtlogpϕ(yxt)
        其中, s s s 为引导尺度,控制条件强度。
  • 优点
    • 通过梯度调整实现精准条件控制,生成质量高。
    • 扩散模型与分类器解耦,可复用预训练分类器。
  • 缺点
    • 需额外训练噪声适应的分类器,增加训练成本。
    • 分类器在强噪声下可能失效,影响引导效果。
  • 典型应用:OpenAI的Guided Diffusion(2021)。

3. Classifier-Free Guidance(无分类器引导)

  • 核心思想:隐式学习条件与无条件生成的差异,通过混合预测结果增强条件控制,无需外部分类器。
  • 实现方式
    • 训练阶段
      • 随机以概率 p p p 丢弃条件(替换为空白标识),使模型同时学习条件生成( p ( y ∣ x ) p(y \mid x) p(yx))和无条件生成( p ( x ) p(x) p(x))。
      • 例如,在文本到图像任务中,以一定概率将文本描述替换为空字符串。
    • 推理阶段
      • 混合条件预测 ϵ θ ( x t , t , y ) \epsilon_\theta(x_t, t, y) ϵθ(xt,t,y) 和无条件预测 ϵ θ ( x t , t , ∅ ) \epsilon_\theta(x_t, t, \emptyset) ϵθ(xt,t,)
        ϵ guided = ϵ θ ( x t , t , ∅ ) + s ⋅ ( ϵ θ ( x t , t , y ) − ϵ θ ( x t , t , ∅ ) ) \epsilon_\text{guided} = \epsilon_\theta(x_t, t, \emptyset) + s \cdot (\epsilon_\theta(x_t, t, y) - \epsilon_\theta(x_t, t, \emptyset)) ϵguided=ϵθ(xt,t,)+s(ϵθ(xt,t,y)ϵθ(xt,t,))
        其中, s > 1 s > 1 s>1 时增强条件效应, s = 1 s=1 s=1 退化为普通条件生成。
  • 优点
    • 无需外部分类器,简化训练流程。
    • 通过调整引导尺度 s s s 灵活平衡生成质量与多样性。
  • 缺点
    • 训练时需同时建模条件与无条件生成,可能增加模型容量需求。
    • 条件丢弃概率需调优,否则影响收敛稳定性。
  • 典型应用:Stable Diffusion、DALL·E 2等主流文本到图像模型。

对比总结

特性Vanilla GuidanceClassifier GuidanceClassifier-Free Guidance
是否需要分类器是(噪声适应)
训练复杂度低(端到端条件训练)中(需训练分类器)中(条件随机丢弃策略)
推理灵活性低(直接替换条件)中(依赖分类器)高(通过 s s s 调节控制强度)
生成质量与条件控制一般高(依赖分类器质量)高(自适应调节)
典型场景简单条件生成高精度条件生成(需分类器可靠)复杂条件生成(如文本到图像)

选择建议

  • 数据充足且条件简单:Vanilla Guidance足够高效。
  • 需高精度控制且分类器可靠:Classifier Guidance适合特定领域(如医学图像生成)。
  • 通用复杂条件生成:Classifier-Free Guidance更优,已成为当前主流(如Stable Diffusion)。

通过理解这三种方法的差异,可根据具体任务需求选择最适合的条件引导策略。

相关文章:

扩散模型中三种加入条件的方式:Vanilla Guidance,Classifier Guidance 以及 Classifier-Free Guidance

扩散模型主要包括两个过程:前向扩散过程和反向去噪过程。前向过程逐渐给数据添加噪声,直到数据变成纯噪声;反向过程则是学习如何从噪声中逐步恢复出原始数据。在生成过程中,模型从一个随机噪声开始,通过多次迭代去噪&a…...

Banana Pi OpenWRT One Wifi6 OpenWrt社区官方开源路由器评测

第一款不可破解、开源、版权软件、符合 FCC、CE 和 RoHS 的维修权路由器 OpenWRT项目今年已经20岁了,为了纪念这一时刻,Banana Pi OpenWrt One/AP-24.XY路由器开发系统已经上市。这是OpenWRT团队与硬件公司的第一个联合项目。选择 Banana Pi,…...

9.1go结构体

Go不是完全面向对象的,没有类的概念,所以结构体应该承担了更多的责任。 结构体定义 使用 type 和 struct 关键字定义: type Person struct { Name string Age int } 字段可以是任意类型,包括其他结构体或指针。 字段名以大写…...

Manus全球首个通用Agent,Manus AI:Agent应用的ChatGPT时刻

文章目录 前言Manus AI: 全球首个通用AgentManus AI: 技术架构与创始人经历AI Agent的实现框架与启示AI Agent的发展预测行业风险提示 前言 这是一篇关于Manus AI及其在通用人工智能领域的应用和前景的报告,主要介绍了Manus AI的产品定位、功能、技术架构、创始人经…...

【SAP-PP】生产版本维护

一、基本概念 生产版本:用于定义一种产品,不同的生产方式,包含物料清单(BOM)和工艺路线的信息,给生产带来更多的灵活性。在做产品需求计划时和产品生产时(创建生产订单、生产订单下达前和生产订…...

软考 中级软件设计师 考点笔记总结 day01

文章目录 软考1.0上午考点下午考点 软考1.11、数值及其转换2、计算机内数据表示2.1、定点数 - 浮点数2.2、奇偶校验 和 循环冗余校验 (了解)2.3、海明码 (掌握)2.4、机器数 软考1.0 上午考点 软件工程基础知识: 开发模型、设计原则、测试方…...

K8s控制器Deployment详解

回顾 ReplicaSet 控制器,该控制器是用来维护集群中运行的 Pod 数量的,但是往往在实际操作的时候,我们反而不会去直接使用 RS,而是会使用更上层的控制器,比如说 Deployment。 Deployment 一个非常重要的功能就是实现了 Pod 的滚动…...

【微知】Centos如何迁移到Anolis系统的失败记录?(yum -y install centos2anolis、centos2anolis.py)

背景 本文记录如何从centos 8迁移到anolis系统。 详细步骤 下载迁移repo wget https://mirrors.openanolis.cn/anolis/migration/anolis-migration.repo -O /etc/yum.repos.d/anolis-migration.repo下载centos2anolis工具包 yum -y install centos2anolis安装额外工具包 …...

在 macOS 上使用 CLion 进行 Google Test 单元测试

介绍 Google Test(GTest)是 Google 开源的 C 单元测试框架,它提供了简单易用的断言、测试夹具(Fixtures)和测试运行机制,使 C 开发者能够编写高效的单元测试。 本博客将介绍如何在 macOS 上使用 CLion 配…...

Python SQLite3 保姆级教程:从零开始学数据库操作

Python SQLite3 保姆级教程:从零开始学数据库操作 本文适合纯新手!无需任何数据库基础,跟着步骤操作即可掌握 SQLite3 的核心用法。 目标:让你像用记事本一样轻松操作数据库! 目录 什么是 SQLite3?环境准…...

深度解析:视频软编码与硬编码的优劣对比

视频编码 一、基本原理与核心技术 压缩原理 通过时空冗余消除实现数据压缩: 空间冗余:利用帧内预测(如DC/角度预测)消除单帧内相邻像素相似性。时间冗余:运动估计与补偿技术(ME/MC)减少连续帧间…...

Azure云生态系统详解:核心服务、混合架构与云原生概念

核心服务:深入掌握Azure SQL Database、Azure Database for PostgreSQL、Azure Database for MySQL的架构、备份恢复、高可用性配置(如Geo-Replication、自动故障转移组、异地冗余备份)。混合架构:熟悉Azure Arc(管理混…...

人工智能之数学基础:正交矩阵

本文重点 正交矩阵是线性代数中一个重要的特殊矩阵,它在许多领域都有广泛的应用。 什么是正交矩阵 如图所示,当矩阵A满足如上所示的条件的时候,此时我们就可以认为是正交矩阵,需要注意一点矩阵A必为方阵。 正交矩阵的充要条件 …...

分布式锁—7.Curator的分布式锁

大纲 1.Curator的可重入锁的源码 2.Curator的非可重入锁的源码 3.Curator的可重入读写锁的源码 4.Curator的MultiLock源码 5.Curator的Semaphore源码 1.Curator的可重入锁的源码 (1)InterProcessMutex获取分布式锁 (2)InterProcessMutex的初始化 (3)InterProcessMutex.…...

【笔记】STM32L4系列使用RT-Thread Studio电源管理组件(PM框架)实现低功耗

硬件平台:STM32L431RCT6 RT-Thread版本:4.1.0 目录 一.新建工程 二.配置工程 ​编辑 三.移植pm驱动 四.配置cubeMX 五.修改驱动文件,干掉报错 六.增加用户低功耗逻辑 1.设置唤醒方式 2.设置睡眠时以及唤醒后动作 ​编辑 3.增加测试命…...

C++什么是深复制和浅复制,构造函数和析构函数,哪一个可以写成虚函数,为什么?

在C之中深复制是指对于值类型复制它的值,对于指针类型不仅仅复制指针指向的值,还会重新分配一个内存空间用于放置复制的值(对动态分配的内存进行重新分配和内存复制),这种深复制不会出现悬空指针的问题,但是…...

从连接到交互:SDN 架构下 OpenFlow 协议的流程与报文剖析

在SDN架构中,交换机与控制器之间的通信基于 OpenFlow协议,其设计目的是实现控制平面与数据平面的解耦。以下是 交换机连接控制器 和 数据包进入交换机触发交互 的详细流程及协议报文分析: 一、交换机连接控制器的流程(初始化阶段&…...

第七课:Python反爬攻防战:Headers/IP代理与验证码

在爬虫开发过程中,反爬虫机制成为了我们必须面对的挑战。本文将深入探讨Python爬虫中常见的反爬机制,并详细解析如何通过随机User-Agent生成、代理IP池搭建以及验证码识别来应对这些反爬策略。文章将包含完整的示例代码,帮助读者更好地理解和…...

Golang学习笔记_47——访问者模式

Golang学习笔记_44——命令模式 Golang学习笔记_45——备忘录模式 Golang学习笔记_46——状态模式 文章目录 一、核心概念1. 定义2. 解决的问题3. 核心角色4. 类图 二、特点分析三、适用场景1. 编译器实现2. 财务系统3. UI组件系统 四、Go语言实现示例完整实现代码执行结果 五、…...

软件高级架构师 - 软件工程

补充中 测试 测试类型 静态测试 动态测试 测试阶段 单元测试中,包含性能测试,如下: 集成测试中,包含以下: 维护 遗留系统处置 高水平低价值:采取集成 对于这类系统,采取 集成 的方式&…...

IDEA 基础配置: maven配置 | 服务窗口配置

文章目录 IDEA版本与MAVEN版本对应关系maven配置镜像源插件idea打开服务工具窗口IDEA中的一些常见问题及其解决方案IDEA版本与MAVEN版本对应关系 查找发布时间在IDEA版本之前的dea2021可以使用maven3.8以及以前的版本 比如我是idea2021.2.2 ,需要将 maven 退到 apache-maven-3.…...

Qt之QGraphicsView图像操作

QGraphicsView图像操作:旋转、放大、缩小、移动、图层切换 1 摘要 GraphicsView框架结构主要包含三个主要的类QGraphicsScene(场景)、QGraphicsView(视图)、QGraphicsItem(图元)。QGraphicsScene本身不可见,是一个存储图元的容器,必须通过与之相连的QGraphicsView视图来显…...

人工智能之数学基础:对线性代数中逆矩阵的思考?

本文重点 逆矩阵是线性代数中的一个重要概念,它在线性方程组、矩阵方程、动态系统、密码学、经济学和金融学以及计算机图形学等领域都有广泛的应用。通过了解逆矩阵的定义、性质、计算方法和应用,我们可以更好地理解和应用线性代数知识,解决各种实际问题。 关于逆矩阵的思…...

嵌入式开发之串行数据处理

前题 前面几篇文章写了关于嵌入式软件开发时,关于串行数据处理的一些相关内容,有兴趣的可以看看《嵌入式开发:软件架构、驱动开发与串行数据处理》、《嵌入式软件开发之生产关系模型》和《嵌入式开发之Modbus-RTU协议解析》相关的内容。从业十…...

机器学习(六)

一,决策树: 简介: 决策树是一种通过构建类似树状的结构(颠倒的树),从根节点开始逐步对数据进行划分,最终在叶子节点做出预测结果的模型。 结构组成: 根节点:初始的数据集…...

结合unittest和pytest进行虚拟数据库测试

使用 pytest 和 MagicMock 模拟数据库操作,并测试假设的 create_user 函数,将用户添加到数据库中。 代码实现 from datetime import date from typing import List, Optional from unittest.mock import MagicMock from pydantic import BaseModel, Fi…...

Spring Boot 监听器(Listeners)详细教程

Spring Boot 监听器(Listeners)详细教程 目录 Spring Boot 监听器概述监听器核心概念最佳使用场景实现步骤高级配置详细使用场景总结 1. Spring Boot 监听器概述 Spring Boot 监听器(Listeners)基于 Spring Framework 的事件机制…...

工具介绍《githack》以及Git 命令行

一、Githack 工具介绍 Githack 是一个用于检测和利用网站 .git 目录泄露漏洞的安全工具。当网站错误配置导致 .git 目录可公开访问时,攻击者可通过该工具下载 .git 中的版本控制文件,并重建完整的项目源代码。 核心用途 检测 .git 目录泄露漏洞。从泄…...

【hello git】git rebase、git merge、git stash、git cherry-pick

目录 一、git merge:保留了原有分支的提交结构 二、git rebase:提交分支更加整洁 三、git stash 四、git cherry-pick 共同点:将 一个分支的提交 合并到 到另一个上分支上去 一、git merge:保留了原有分支的提交结构 现有一个模型…...

MR的环形缓冲区(底层)

MapReduce的大致流程: 1、HDFS读取数据; 2、按照规则进行分片,形成若干个spilt; 3、进行Map 4、打上分区标签(patition) 5、数据入环形缓冲区(KVbuffer) 6、原地排序&#xff…...