Java CountDownLatch 用法和源码解析
🧑 博主简介:CSDN博客专家,历代文学网(PC端可以访问:https://literature.sinhy.com/#/literature?__c=1000,移动端可微信小程序搜索“历代文学”)总架构师,
15年
工作经验,精通Java编程
,高并发设计
,Springboot和微服务
,熟悉Linux
,ESXI虚拟化
以及云原生Docker和K8s
,热衷于探索科技的边界,并将理论知识转化为实际应用。保持对新技术的好奇心,乐于分享所学,希望通过我的实践经历和见解,启发他人的创新思维。在这里,我希望能与志同道合的朋友交流探讨,共同进步,一起在技术的世界里不断学习成长。
技术合作请加本人wx(注明来自csdn):foreast_sea
Java CountDownLatch 用法和源码解析
- CountDownLatch 用法和源码解析
- 认识 CountDownLatch
- CountDownLatch 的使用
- CountDownLatch 应用场景
- CountDownLatch 用法
- CountDownLatch 源码分析
- Sync 内部类
- await 方法
- countDown 方法
- 总结
CountDownLatch
是 Java 并发包中的一个同步辅助类,用于协调多个线程之间的同步操作。是多线程控制的一种工具,它被称为 门阀
、 计数器
或者 闭锁
。
它内部有一个计数器,这个计数器在构造 CountDownLatch
时被初始化,其值代表需要等待的事件数量。例如,当你创建一个 CountDownLatch
对象并传入数字 5,就表示需要等待 5 个事件完成。
工作原理如下:主线程(或者任何等待的线程)会调用 await 方法,此时线程会被阻塞。在其他的线程(通常是执行任务的工作线程)完成自己的任务后,会调用 countDown 方法。每调用一次 countDown 方法,计数器的值就会减 1。
当计数器的值减到 0 时,那些因调用 await 方法而被阻塞的线程就会被唤醒,继续执行后续的操作。这就像是在赛跑比赛中,所有选手(工作线程)完成比赛(调用 countDown)后,裁判(调用 await 的线程)才宣布比赛结束并进行后续流程。
举个例子,假设有一个程序需要等待多个文件下载完成后才能进行下一步处理。可以使用 CountDownLatch,每个文件下载线程在完成下载后调用 countDown,而负责后续处理的主线程调用 await 等待,当所有文件下载完成,主线程就可以开始进行下一步操作,从而有效地实现了多线程之间的协调同步。
认识 CountDownLatch
CountDownLatch 能够使一个线程在等待另外一些线程完成各自工作之后,再继续执行。它相当于是一个计数器,这个计数器的初始值就是线程的数量,每当一个任务完成后,计数器的值就会减一,当计数器的值为 0 时,表示所有的线程都已经任务了,然后在 CountDownLatch 上等待的线程就可以恢复执行接下来的任务。
CountDownLatch 的使用
CountDownLatch 提供了一个构造方法,你必须指定其初始值,还指定了 countDown
方法,这个方法的作用主要用来减小计数器的值,当计数器变为 0 时,在 CountDownLatch 上 await
的线程就会被唤醒,继续执行其他任务。当然也可以延迟唤醒,给 CountDownLatch 加一个延迟时间就可以实现。
其主要方法如下
CountDownLatch 主要有下面这几个应用场景
CountDownLatch 应用场景
典型的应用场景就是当一个服务启动时,同时会加载很多组件和服务,这时候主线程会等待组件和服务的加载。当所有的组件和服务都加载完毕后,主线程和其他线程在一起完成某个任务。
CountDownLatch 还可以实现学生一起比赛跑步的程序,CountDownLatch 初始化为学生数量的线程,鸣枪后,每个学生就是一条线程,来完成各自的任务,当第一个学生跑完全程后,CountDownLatch 就会减一,直到所有的学生完成后,CountDownLatch 会变为 0 ,接下来再一起宣布跑步成绩。
顺着这个场景,你自己就可以延伸、拓展出来很多其他任务场景。
CountDownLatch 用法
下面我们通过一个简单的计数器来演示一下 CountDownLatch 的用法
public class TCountDownLatch {public static void main(String[] args) {CountDownLatch latch = new CountDownLatch(5);Increment increment = new Increment(latch);Decrement decrement = new Decrement(latch);new Thread(increment).start();new Thread(decrement).start();try {Thread.sleep(6000);} catch (InterruptedException e) {e.printStackTrace();}}
}class Decrement implements Runnable {CountDownLatch countDownLatch;public Decrement(CountDownLatch countDownLatch){this.countDownLatch = countDownLatch;}@Overridepublic void run() {try {for(long i = countDownLatch.getCount();i > 0;i--){Thread.sleep(1000);System.out.println("countdown");this.countDownLatch.countDown();}} catch (InterruptedException e) {e.printStackTrace();}}
}class Increment implements Runnable {CountDownLatch countDownLatch;public Increment(CountDownLatch countDownLatch){this.countDownLatch = countDownLatch;}@Overridepublic void run() {try {System.out.println("await");countDownLatch.await();} catch (InterruptedException e) {e.printStackTrace();}System.out.println("Waiter Released");}
}
在 main 方法中我们初始化了一个计数器为 5 的 CountDownLatch,在 Decrement 方法中我们使用 countDown
执行减一操作,然后睡眠一段时间,同时在 Increment 类中进行等待,直到 Decrement 中的线程完成计数减一的操作后,唤醒 Increment 类中的 run 方法,使其继续执行。
下面我们再来通过学生赛跑这个例子来演示一下 CountDownLatch 的具体用法
public class StudentRunRace {CountDownLatch stopLatch = new CountDownLatch(1);CountDownLatch runLatch = new CountDownLatch(10);public void waitSignal() throws Exception{System.out.println("选手" + Thread.currentThread().getName() + "正在等待裁判发布口令");stopLatch.await();System.out.println("选手" + Thread.currentThread().getName() + "已接受裁判口令");Thread.sleep((long) (Math.random() * 10000));System.out.println("选手" + Thread.currentThread().getName() + "到达终点");runLatch.countDown();}public void waitStop() throws Exception{Thread.sleep((long) (Math.random() * 10000));System.out.println("裁判"+Thread.currentThread().getName()+"即将发布口令");stopLatch.countDown();System.out.println("裁判"+Thread.currentThread().getName()+"已发送口令,正在等待所有选手到达终点");runLatch.await();System.out.println("所有选手都到达终点");System.out.println("裁判"+Thread.currentThread().getName()+"汇总成绩排名");}public static void main(String[] args) {ExecutorService service = Executors.newCachedThreadPool();StudentRunRace studentRunRace = new StudentRunRace();for (int i = 0; i < 10; i++) {Runnable runnable = () -> {try {studentRunRace.waitSignal();} catch (Exception e) {e.printStackTrace();}};service.execute(runnable);}try {studentRunRace.waitStop();} catch (Exception e) {e.printStackTrace();}service.shutdown();}
}
下面我们就来一起分析一下 CountDownLatch
的源码
CountDownLatch 源码分析
CountDownLatch 使用起来比较简单,但是却非常有用,现在你可以在你的工具箱中加上 CountDownLatch 这个工具类了。下面我们就来深入认识一下 CountDownLatch。
CountDownLatch 的底层是由 AbstractQueuedSynchronizer
支持,而 AQS 的数据结构的核心就是两个队列,一个是 同步队列(sync queue)
,一个是条件队列(condition queue)
。
Sync 内部类
CountDownLatch 在其内部是一个 Sync ,它继承了 AQS 抽象类。
private static final class Sync extends AbstractQueuedSynchronizer {...}
CountDownLatch 其实其内部只有一个 sync
属性,并且是 final 的
private final Sync sync;
CountDownLatch 只有一个带参数的构造方法
public CountDownLatch(int count) {if (count < 0) throw new IllegalArgumentException("count < 0");this.sync = new Sync(count);
}
也就是说,初始化的时候必须指定计数器的数量,如果数量为负会直接抛出异常。
然后把 count 初始化为 Sync 内部的 count,也就是
Sync(int count) {setState(count);
}
注意这里有一个 setState(count),这是什么意思呢?见闻知意这只是一个设置状态的操作,但是实际上不单单是,还有一层意思是 state 的值代表着待达到条件的线程数。这个我们在聊 countDown 方法的时候再讨论。
getCount()
方法的返回值是 getState()
方法,它是 AbstractQueuedSynchronizer 中的方法,这个方法会返回当前线程计数,具有 volatile 读取的内存语义。
// ---- CountDownLatch ----int getCount() {return getState();
}// ---- AbstractQueuedSynchronizer ----protected final int getState() {return state;
}
tryAcquireShared()
方法用于获取·共享状态下对象的状态,判断对象是否为 0 ,如果为 0 返回 1 ,表示能够尝试获取,如果不为 0,那么返回 -1,表示无法获取。
protected int tryAcquireShared(int acquires) {return (getState() == 0) ? 1 : -1;
}// ---- getState() 方法和上面的方法相同 ----
这个 共享状态
属于 AQS 中的概念,在 AQS 中分为两种模式,一种是 独占模式
,一种是 共享模式
。
- tryAcquire 独占模式,尝试获取资源,成功则返回 true,失败则返回 false。
- tryAcquireShared 共享方式,尝试获取资源。负数表示失败;0 表示成功,但没有剩余可用资源;正数表示成功,且有剩余资源。
tryReleaseShared()
方法用于共享模式下的释放
protected boolean tryReleaseShared(int releases) {// 减小数量,变为 0 的时候进行通知。for (;;) {int c = getState();if (c == 0)return false;int nextc = c-1;if (compareAndSetState(c, nextc))return nextc == 0;}
}
这个方法是一个无限循环,获取线程状态,如果线程状态是 0 则表示没有被线程占有,没有占有的话那么直接返回 false ,表示已经释放;然后下一个状态进行 - 1 ,使用 compareAndSetState CAS 方法进行和内存值的比较,如果内存值也是 1 的话,就会更新内存值为 0 ,判断 nextc 是否为 0 ,如果 CAS 比较不成功的话,会再次进行循环判断。
如果 CAS 用法不清楚的话,读者朋友们可以参考这篇文章 告诉你一个 AtomicInteger 的惊天大秘密!
await 方法
await()
方法是 CountDownLatch 一个非常重要的方法,基本上可以说只有 countDown 和 await 方法才是 CountDownLatch 的精髓所在,这个方法将会使当前线程在 CountDownLatch 计数减至零之前一直等待,除非线程被中断。
CountDownLatch 中的 await 方法有两种,一种是不带任何参数的 await()
,一种是可以等待一段时间的await(long timeout, TimeUnit unit)
。下面我们先来看一下 await() 方法。
public void await() throws InterruptedException {sync.acquireSharedInterruptibly(1);
}
await 方法内部会调用 acquireSharedInterruptibly 方法,这个 acquireSharedInterruptibly 是 AQS 中的方法,以共享模式进行中断。
public final void acquireSharedInterruptibly(int arg)throws InterruptedException {if (Thread.interrupted())throw new InterruptedException();if (tryAcquireShared(arg) < 0)doAcquireSharedInterruptibly(arg);
}
可以看到,acquireSharedInterruptibly 方法的内部会首先判断线程是否中断
,如果线程中断,则直接抛出线程中断异常。如果没有中断,那么会以共享的方式获取。如果能够在共享的方式下不能获取锁,那么就会以共享的方式断开链接。
private void doAcquireSharedInterruptibly(int arg)throws InterruptedException {final Node node = addWaiter(Node.SHARED);boolean failed = true;try {for (;;) {final Node p = node.predecessor();if (p == head) {int r = tryAcquireShared(arg);if (r >= 0) {setHeadAndPropagate(node, r);p.next = null; // help GCfailed = false;return;}}if (shouldParkAfterFailedAcquire(p, node) &&parkAndCheckInterrupt())throw new InterruptedException();}} finally {if (failed)cancelAcquire(node);}
}
这个方法有些长,我们分开来看
- 首先,会先构造一个共享模式的 Node 入队
- 然后使用无限循环判断新构造 node 的前驱节点,如果 node 节点的前驱节点是头节点,那么就会判断线程的状态,这里调用了一个 setHeadAndPropagate ,其源码如下
private void setHeadAndPropagate(Node node, int propagate) {Node h = head; setHead(node);if (propagate > 0 || h == null || h.waitStatus < 0 ||(h = head) == null || h.waitStatus < 0) {Node s = node.next;if (s == null || s.isShared())doReleaseShared();}
}
首先会设置头节点,然后进行一系列的判断,获取节点的获取节点的后继,以共享模式进行释放,就会调用 doReleaseShared 方法,我们再来看一下 doReleaseShared 方法
private void doReleaseShared() {for (;;) {Node h = head;if (h != null && h != tail) {int ws = h.waitStatus;if (ws == Node.SIGNAL) {if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))continue; // loop to recheck casesunparkSuccessor(h);}else if (ws == 0 &&!compareAndSetWaitStatus(h, 0, Node.PROPAGATE))continue; // loop on failed CAS}if (h == head) // loop if head changedbreak;}
}
这个方法会以无限循环的方式首先判断头节点是否等于尾节点,如果头节点等于尾节点的话,就会直接退出。如果头节点不等于尾节点,会判断状态是否为 SIGNAL,不是的话就继续循环 compareAndSetWaitStatus,然后断开后继节点。如果状态不是 SIGNAL,也会调用 compareAndSetWaitStatus 设置状态为 PROPAGATE,状态为 0 并且不成功,就会继续循环。
也就是说 setHeadAndPropagate 就是设置头节点并且释放后继节点的一系列过程。
- 我们来看下面的 if 判断,也就是
shouldParkAfterFailedAcquire(p, node)
这里
if (shouldParkAfterFailedAcquire(p, node) &&parkAndCheckInterrupt())throw new InterruptedException();
如果上面 Node p = node.predecessor() 获取前驱节点不是头节点,就会进行 park 断开操作,判断此时是否能够断开,判断的标准如下
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {int ws = pred.waitStatus;if (ws == Node.SIGNAL)return true;if (ws > 0) {do {node.prev = pred = pred.prev;} while (pred.waitStatus > 0);pred.next = node;} else {compareAndSetWaitStatus(pred, ws, Node.SIGNAL);}return false;
}
这个方法会判断 Node p 的前驱节点的结点状态(waitStatus)
,节点状态一共有五种,分别是
-
CANCELLED(1)
:表示当前结点已取消调度。当超时或被中断(响应中断的情况下),会触发变更为此状态,进入该状态后的结点将不会再变化。 -
SIGNAL(-1)
:表示后继结点在等待当前结点唤醒。后继结点入队时,会将前继结点的状态更新为 SIGNAL。 -
CONDITION(-2)
:表示结点等待在 Condition 上,当其他线程调用了 Condition 的 signal() 方法后,CONDITION状态的结点将从等待队列转移到同步队列中,等待获取同步锁。 -
PROPAGATE(-3)
:共享模式下,前继结点不仅会唤醒其后继结点,同时也可能会唤醒后继的后继结点。 -
0
:新结点入队时的默认状态。
如果前驱节点是 SIGNAL 就会返回 true 表示可以断开,如果前驱节点的状态大于 0 (此时为什么不用 ws == Node.CANCELLED ) 呢?因为 ws 大于 0 的条件只有 CANCELLED 状态了。然后就是一系列的查找遍历操作直到前驱节点的 waitStatus > 0。如果 ws <= 0 ,而且还不是 SIGNAL 状态的话,就会使用 CAS 替换前驱节点的 ws 为 SIGNAL 状态。
如果检查判断是中断状态的话,就会返回 false。
private final boolean parkAndCheckInterrupt() {LockSupport.park(this);return Thread.interrupted();
}
这个方法使用 LockSupport.park
断开连接,然后返回线程是否中断的标志。
cancelAcquire()
用于取消等待队列,如果等待过程中没有成功获取资源(如timeout,或者可中断的情况下被中断了),那么取消结点在队列中的等待。
private void cancelAcquire(Node node) {if (node == null)return;node.thread = null;Node pred = node.prev;while (pred.waitStatus > 0)node.prev = pred = pred.prev;Node predNext = pred.next;node.waitStatus = Node.CANCELLED;if (node == tail && compareAndSetTail(node, pred)) {compareAndSetNext(pred, predNext, null);} else {int ws;if (pred != head &&((ws = pred.waitStatus) == Node.SIGNAL ||(ws <= 0 && compareAndSetWaitStatus(pred, ws, Node.SIGNAL))) &&pred.thread != null) {Node next = node.next;if (next != null && next.waitStatus <= 0)compareAndSetNext(pred, predNext, next);} else {unparkSuccessor(node);}node.next = node; // help GC}
}
所以,对 CountDownLatch 的 await 调用大致会有如下的调用过程。
一个和 await 重载的方法是 await(long timeout, TimeUnit unit)
,这个方法和 await 最主要的区别就是这个方法能够可以等待计数器一段时间再执行后续操作。
countDown 方法
countDown 是和 await 同等重要的方法,countDown 用于减少计数器的数量,如果计数减为 0 的话,就会释放所有的线程。
public void countDown() {sync.releaseShared(1);
}
这个方法会调用 releaseShared 方法,此方法用于共享模式下的释放操作,首先会判断是否能够进行释放,判断的方法就是 CountDownLatch 内部类 Sync 的 tryReleaseShared 方法
public final boolean releaseShared(int arg) {if (tryReleaseShared(arg)) {doReleaseShared();return true;}return false;
}// ---- CountDownLatch ----protected boolean tryReleaseShared(int releases) {for (;;) {int c = getState();if (c == 0)return false;int nextc = c-1;if (compareAndSetState(c, nextc))return nextc == 0;}
}
tryReleaseShared 会进行 for 循环判断线程状态值,使用 CAS 不断尝试进行替换。
如果能够释放,就会调用 doReleaseShared 方法
private void doReleaseShared() {for (;;) {Node h = head;if (h != null && h != tail) {int ws = h.waitStatus;if (ws == Node.SIGNAL) {if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))continue; // loop to recheck casesunparkSuccessor(h);}else if (ws == 0 &&!compareAndSetWaitStatus(h, 0, Node.PROPAGATE))continue; // loop on failed CAS}if (h == head) // loop if head changedbreak;}
}
可以看到,doReleaseShared 其实也是一个无限循环不断使用 CAS 尝试替换的操作。
总结
本文是 CountDownLatch
的基本使用和源码分析,CountDownLatch
就是一个基于 AQS 的计数器,它内部的方法都是围绕 AQS 框架来谈的,除此之外还有其他比如 ReentrantLock、Semaphore 等都是 AQS 的实现,所以要研究并发的话,离不开对 AQS 的探讨。CountDownLatch 的源码看起来很少,比较简单,但是其内部比如 await 方法的调用链路却很长,也值得花费时间深入研究。
相关文章:

Java CountDownLatch 用法和源码解析
🧑 博主简介:CSDN博客专家,历代文学网(PC端可以访问:https://literature.sinhy.com/#/literature?__c1000,移动端可微信小程序搜索“历代文学”)总架构师,15年工作经验,…...

Unity引擎使用HybridCLR(华佗)热更新
大家好,我是阿赵。 阿赵我做手机游戏已经有十几年时间了。记得刚开始从做页游的公司转到去做手游的公司,在面试的时候很重要的一个点,就是会不会用Lua。使用Lua的原因很简单,就是为了热更新。 热更新游戏内容很重要。如果…...

深度学习进阶:神经网络优化技术全解析
文章目录 前言一、优化问题的本质1.1 目标1.2 挑战 二、梯度下降优化算法2.1 基础SGD2.2 动量法2.3 Adam优化器 三、正则化技术3.1 L2正则化3.2 Dropout 四、学习率调度4.1 为什么要调度?4.2 指数衰减4.3 ReduceLROnPlateau 五、实战优化:MNIST案例5.1 完…...

肿瘤检测新突破:用随机森林分类器助力医学诊断
前言 你有没有想过,科技能不能在肿瘤检测中发挥巨大的作用?别着急,今天我们将带你走进一个“聪明”的世界,通过随机森林分类器进行肿瘤检测。对,你没听错,机器学习可以帮助医生更快、更准确地判断肿瘤是良性还是恶性,就像医生口袋里的“超级助手”一样,随时准备提供帮…...

DeepSeek学习 一
DeepSeek学习 一 一、DeepSeek是什么?二、Deepseek可以做什么?模型理解提问内容差异使用原则 模式认识三、如何提问?RTGO提示语结构CO-STAR提示语框架DeepSeek R1提示语技巧 总结 一、DeepSeek是什么? DeepSeek是一家专注通用人工…...

编程考古-Borland历史:《.EXE Interview》对Anders Hejlsberg关于Delphi的采访内容(上)
为了纪念Delphi在2002年2月14日发布的25周年(2020.2.12),这里有一段由.EXE杂志编辑Will Watts于1995年对Delphi首席架构师Anders Hejlsberg进行的采访记录。在这次采访中,Anders讨论了Delphi的设计与发展,以及即将到来的针对Windows 95的32位版本。 问: Delphi是如何从T…...

高并发之接口限流,springboot整合Resilience4j实现接口限流
添加依赖 <dependency><groupId>io.github.resilience4j</groupId><artifactId>resilience4j-spring-boot2</artifactId><version>1.7.0</version> </dependency><dependency><groupId>org.springframework.boot…...

电脑如何拦截端口号,实现阻断访问?
如果你弟弟喜欢玩游戏,你可以查询该应用占用的端口,结合以下方法即可阻断端口号,让弟弟好好学习,天天向上! 拦截端口可以通过防火墙和路由器进行拦截 ,以下是常用方法: 方法 1:使用…...

RK3588 安装ffmpeg6.1.2
在安装 ffmpeg 在 RK3588 开发板上时,你需要确保你的开发环境(例如 Ubuntu、Debian 或其他 Linux 发行版)已经设置好了交叉编译工具链,以便能够针对 RK3588 架构编译软件。以下是一些步骤和指导,帮助你安装 FFmpeg: 1. 安装依赖项 首先,确保你的系统上安装了所有必要的…...

SQL SELECT DISTINCT 语句
在 SQL 中,SELECT DISTINCT 语句用于从表中查询不重复的值。这对于需要从数据库检索唯一值时非常有用。DISTINCT 关键字会去除结果集中重复的行,只返回唯一的记录。 SELECT DISTINCT column1, column2, ... FROM table_name; column1, column2, ... 是…...

MELON的难题
MELON的难题 真题目录: 点击去查看 E 卷 200分题型 题目描述 MELON有一堆精美的雨花石(数量为n,重量各异),准备送给S和W。MELON希望送给俩人的雨花石重量一致,请你设计一个程序,帮MELON确认是否能将雨花石平均分配。 输入描述 第1行输入为雨花石个数: n,0 < n &l…...

Restful 接口设计规范
一、资源与 URL 1. 使用名词表示资源 URL 应该以名词为主,用来表示具体的资源,而不是动词。例如,/users 表示用户资源集合,/users/{id} 表示单个用户资源。 2. 采用复数形式 一般来说,资源的 URL 应该使用复数形式…...

Java后端高频面经——Spring、SpringBoot、MyBatis
Spring定义一个Bean有哪些方法?依赖注入有哪些方法? (1)定义Bean的方法 注解定义Bean,Component 用于标记一个类作为Spring的bean。当一个类被Component注解标记时,Spring会将其实例化为一个bean࿰…...

扩散模型中三种加入条件的方式:Vanilla Guidance,Classifier Guidance 以及 Classifier-Free Guidance
扩散模型主要包括两个过程:前向扩散过程和反向去噪过程。前向过程逐渐给数据添加噪声,直到数据变成纯噪声;反向过程则是学习如何从噪声中逐步恢复出原始数据。在生成过程中,模型从一个随机噪声开始,通过多次迭代去噪&a…...

Banana Pi OpenWRT One Wifi6 OpenWrt社区官方开源路由器评测
第一款不可破解、开源、版权软件、符合 FCC、CE 和 RoHS 的维修权路由器 OpenWRT项目今年已经20岁了,为了纪念这一时刻,Banana Pi OpenWrt One/AP-24.XY路由器开发系统已经上市。这是OpenWRT团队与硬件公司的第一个联合项目。选择 Banana Pi,…...

9.1go结构体
Go不是完全面向对象的,没有类的概念,所以结构体应该承担了更多的责任。 结构体定义 使用 type 和 struct 关键字定义: type Person struct { Name string Age int } 字段可以是任意类型,包括其他结构体或指针。 字段名以大写…...

Manus全球首个通用Agent,Manus AI:Agent应用的ChatGPT时刻
文章目录 前言Manus AI: 全球首个通用AgentManus AI: 技术架构与创始人经历AI Agent的实现框架与启示AI Agent的发展预测行业风险提示 前言 这是一篇关于Manus AI及其在通用人工智能领域的应用和前景的报告,主要介绍了Manus AI的产品定位、功能、技术架构、创始人经…...

【SAP-PP】生产版本维护
一、基本概念 生产版本:用于定义一种产品,不同的生产方式,包含物料清单(BOM)和工艺路线的信息,给生产带来更多的灵活性。在做产品需求计划时和产品生产时(创建生产订单、生产订单下达前和生产订…...

软考 中级软件设计师 考点笔记总结 day01
文章目录 软考1.0上午考点下午考点 软考1.11、数值及其转换2、计算机内数据表示2.1、定点数 - 浮点数2.2、奇偶校验 和 循环冗余校验 (了解)2.3、海明码 (掌握)2.4、机器数 软考1.0 上午考点 软件工程基础知识: 开发模型、设计原则、测试方…...

K8s控制器Deployment详解
回顾 ReplicaSet 控制器,该控制器是用来维护集群中运行的 Pod 数量的,但是往往在实际操作的时候,我们反而不会去直接使用 RS,而是会使用更上层的控制器,比如说 Deployment。 Deployment 一个非常重要的功能就是实现了 Pod 的滚动…...

【微知】Centos如何迁移到Anolis系统的失败记录?(yum -y install centos2anolis、centos2anolis.py)
背景 本文记录如何从centos 8迁移到anolis系统。 详细步骤 下载迁移repo wget https://mirrors.openanolis.cn/anolis/migration/anolis-migration.repo -O /etc/yum.repos.d/anolis-migration.repo下载centos2anolis工具包 yum -y install centos2anolis安装额外工具包 …...

在 macOS 上使用 CLion 进行 Google Test 单元测试
介绍 Google Test(GTest)是 Google 开源的 C 单元测试框架,它提供了简单易用的断言、测试夹具(Fixtures)和测试运行机制,使 C 开发者能够编写高效的单元测试。 本博客将介绍如何在 macOS 上使用 CLion 配…...

Python SQLite3 保姆级教程:从零开始学数据库操作
Python SQLite3 保姆级教程:从零开始学数据库操作 本文适合纯新手!无需任何数据库基础,跟着步骤操作即可掌握 SQLite3 的核心用法。 目标:让你像用记事本一样轻松操作数据库! 目录 什么是 SQLite3?环境准…...

深度解析:视频软编码与硬编码的优劣对比
视频编码 一、基本原理与核心技术 压缩原理 通过时空冗余消除实现数据压缩: 空间冗余:利用帧内预测(如DC/角度预测)消除单帧内相邻像素相似性。时间冗余:运动估计与补偿技术(ME/MC)减少连续帧间…...

Azure云生态系统详解:核心服务、混合架构与云原生概念
核心服务:深入掌握Azure SQL Database、Azure Database for PostgreSQL、Azure Database for MySQL的架构、备份恢复、高可用性配置(如Geo-Replication、自动故障转移组、异地冗余备份)。混合架构:熟悉Azure Arc(管理混…...

人工智能之数学基础:正交矩阵
本文重点 正交矩阵是线性代数中一个重要的特殊矩阵,它在许多领域都有广泛的应用。 什么是正交矩阵 如图所示,当矩阵A满足如上所示的条件的时候,此时我们就可以认为是正交矩阵,需要注意一点矩阵A必为方阵。 正交矩阵的充要条件 …...

分布式锁—7.Curator的分布式锁
大纲 1.Curator的可重入锁的源码 2.Curator的非可重入锁的源码 3.Curator的可重入读写锁的源码 4.Curator的MultiLock源码 5.Curator的Semaphore源码 1.Curator的可重入锁的源码 (1)InterProcessMutex获取分布式锁 (2)InterProcessMutex的初始化 (3)InterProcessMutex.…...

【笔记】STM32L4系列使用RT-Thread Studio电源管理组件(PM框架)实现低功耗
硬件平台:STM32L431RCT6 RT-Thread版本:4.1.0 目录 一.新建工程 二.配置工程 编辑 三.移植pm驱动 四.配置cubeMX 五.修改驱动文件,干掉报错 六.增加用户低功耗逻辑 1.设置唤醒方式 2.设置睡眠时以及唤醒后动作 编辑 3.增加测试命…...

C++什么是深复制和浅复制,构造函数和析构函数,哪一个可以写成虚函数,为什么?
在C之中深复制是指对于值类型复制它的值,对于指针类型不仅仅复制指针指向的值,还会重新分配一个内存空间用于放置复制的值(对动态分配的内存进行重新分配和内存复制),这种深复制不会出现悬空指针的问题,但是…...

从连接到交互:SDN 架构下 OpenFlow 协议的流程与报文剖析
在SDN架构中,交换机与控制器之间的通信基于 OpenFlow协议,其设计目的是实现控制平面与数据平面的解耦。以下是 交换机连接控制器 和 数据包进入交换机触发交互 的详细流程及协议报文分析: 一、交换机连接控制器的流程(初始化阶段&…...