当前位置: 首页 > news >正文

机器学习在地图制图学中的应用

原文链接:https://www.tandfonline.com/doi/full/10.1080/15230406.2023.2295948#abstract

CSDN/2025/Machine learning in cartography.pdf at main · keykeywu2048/CSDN · GitHub

核心内容

本文是《制图学与地理信息科学》特刊的扩展评论,系统探讨了机器学习(尤其是深度学习)在制图学中的研究进展、应用场景及挑战,并展望未来发展方向。


1. 制图数据的机器学习编码
  • 数据表示挑战:制图数据(如矢量、栅格、图结构)的非结构化特性对模型设计提出挑战。

  • 编码方法

    • 栅格编码:简单但损失几何细节,需权衡分辨率与计算效率。

    • 分层栅格编码:保留多图层信息(如标签与背景分离)。

    • 图编码:显式建模空间关系,适用于道路网络、建筑物群等。

    • 空间关系编码:捕捉对象间的拓扑与几何关系(如邻接、包含)。


2. 机器学习模型的发展
  • 趋势:从依赖大规模标注数据转向半监督学习、自训练和元学习,减少标注需求。

  • 模型类型

    • 卷积神经网络(CNN):处理栅格地图(如U-Net用于制图综合)。

    • 生成对抗网络(GAN):风格迁移、地图生成(如CycleGAN生成OpenStreetMap风格)。

    • 图神经网络(GNN):建模空间关系(如建筑物群聚类、道路网络简化)。

    • Transformer:捕捉长距离上下文(如处理地图分块时的全局信息)。


3. 机器学习在制图学的应用
  1. 模式识别

    • 地图分析:识别城市功能区、道路交叉口、地形模式(如沙丘分类)。

    • 地图评估:检测地图版本间的模式不一致性(如历史与现代地图对齐)。

    • 制图综合预处理:识别建筑物群排列模式(如共线、网格结构)。

  2. 制图综合

    • 通过深度学习模型简化地图元素(如建筑物矩形化、道路网络简化)。

    • 挑战:需结合上下文信息,优化损失函数以保持几何特征(如面积、角度)。

  3. 风格迁移

    • 将地图风格(符号、颜色)从一种数据源迁移至另一数据(如卫星图像生成历史风格地图)。

    • 改进方向:增强生成地图的拓扑一致性(如结合GPS轨迹优化路网)。

  4. 地图标注

    • 利用生成模型(如Pix2Pix)预测标签位置,但需解决标签几何与背景融合问题。

    • 未来:结合规则优化(如标签避让、可读性约束)。


4. 显式制图知识的必要性
  • 挑战:纯数据驱动模型可能忽视制图原则(如拓扑保持、美学设计)。

  • 融合策略

    • 数据增强:添加几何特征(如形状度量、空间关系)。

    • 模型架构:设计领域专用层(如Gestalt认知原则的卷积核)。

    • 损失函数:融入制图质量指标(如标签避让损失、形状保持损失)。

    • 混合流程:结合传统算法(如Delaunay三角剖分)与机器学习。


5. 未来方向
  1. 多模态与跨领域融合

    • 结合文本、图像与语义数据生成多尺度地图,支持数字孪生应用。

  2. 改进制图综合

    • 开发基于图编码的端到端模型,增强上下文感知能力。

  3. 可解释性与轻量化

    • 提升模型透明度,降低计算资源需求(如知识蒸馏、神经架构搜索)。

  4. 伦理与真实性

    • 防范“虚假地图”生成,确保数据可信性。


结论

机器学习为制图学提供了新工具,尤其在复杂几何建模、算法加速和风格创新中表现突出。然而,需与传统制图知识结合,以平衡数据驱动灵活性与领域原则的严谨性。未来,随着多模态模型和空间认知研究的深入,制图学有望实现更高水平的自动化与智能化。

相关文章:

机器学习在地图制图学中的应用

原文链接:https://www.tandfonline.com/doi/full/10.1080/15230406.2023.2295948#abstract CSDN/2025/Machine learning in cartography.pdf at main keykeywu2048/CSDN GitHub 核心内容 本文是《制图学与地理信息科学》特刊的扩展评论,系统探讨了机…...

【JAVA架构师成长之路】【电商系统实战】第9集:订单超时关闭实战(Kafka延时队列 + 定时任务补偿)

30分钟课程:订单超时关闭实战(Kafka延时队列 定时任务补偿) 课程目标 理解订单超时关闭的业务场景与核心需求。掌握基于 Kafka 延时队列与定时任务的关单方案设计。实现高并发场景下的可靠关单逻辑(防重复、幂等性)。…...

《探秘课程蒸馏体系“三阶训练法”:解锁知识层级递进式迁移的密码》

在人工智能与教育科技深度融合的时代,如何高效地实现知识传递与能力提升,成为众多学者、教育工作者以及技术专家共同探索的课题。课程蒸馏体系中的“三阶训练法”,作为一种创新的知识迁移模式,正逐渐崭露头角,为解决这…...

K8s 1.27.1 实战系列(六)Pod

一、Pod介绍 1、Pod 的定义与核心设计 Pod 是 Kubernetes 的最小调度单元,由一个或多个容器组成,这些容器共享网络、存储、进程命名空间等资源,形成紧密协作的应用单元。Pod 的设计灵感来源于“豌豆荚”模型,容器如同豆子,共享同一环境但保持隔离性。其核心设计目标包括…...

Java CountDownLatch 用法和源码解析

🧑 博主简介:CSDN博客专家,历代文学网(PC端可以访问:https://literature.sinhy.com/#/literature?__c1000,移动端可微信小程序搜索“历代文学”)总架构师,15年工作经验,…...

Unity引擎使用HybridCLR(华佗)热更新

大家好,我是阿赵。   阿赵我做手机游戏已经有十几年时间了。记得刚开始从做页游的公司转到去做手游的公司,在面试的时候很重要的一个点,就是会不会用Lua。使用Lua的原因很简单,就是为了热更新。   热更新游戏内容很重要。如果…...

深度学习进阶:神经网络优化技术全解析

文章目录 前言一、优化问题的本质1.1 目标1.2 挑战 二、梯度下降优化算法2.1 基础SGD2.2 动量法2.3 Adam优化器 三、正则化技术3.1 L2正则化3.2 Dropout 四、学习率调度4.1 为什么要调度?4.2 指数衰减4.3 ReduceLROnPlateau 五、实战优化:MNIST案例5.1 完…...

肿瘤检测新突破:用随机森林分类器助力医学诊断

前言 你有没有想过,科技能不能在肿瘤检测中发挥巨大的作用?别着急,今天我们将带你走进一个“聪明”的世界,通过随机森林分类器进行肿瘤检测。对,你没听错,机器学习可以帮助医生更快、更准确地判断肿瘤是良性还是恶性,就像医生口袋里的“超级助手”一样,随时准备提供帮…...

DeepSeek学习 一

DeepSeek学习 一 一、DeepSeek是什么?二、Deepseek可以做什么?模型理解提问内容差异使用原则 模式认识三、如何提问?RTGO提示语结构CO-STAR提示语框架DeepSeek R1提示语技巧 总结 一、DeepSeek是什么? DeepSeek是一家专注通用人工…...

编程考古-Borland历史:《.EXE Interview》对Anders Hejlsberg关于Delphi的采访内容(上)

为了纪念Delphi在2002年2月14日发布的25周年(2020.2.12),这里有一段由.EXE杂志编辑Will Watts于1995年对Delphi首席架构师Anders Hejlsberg进行的采访记录。在这次采访中,Anders讨论了Delphi的设计与发展,以及即将到来的针对Windows 95的32位版本。 问: Delphi是如何从T…...

高并发之接口限流,springboot整合Resilience4j实现接口限流

添加依赖 <dependency><groupId>io.github.resilience4j</groupId><artifactId>resilience4j-spring-boot2</artifactId><version>1.7.0</version> </dependency><dependency><groupId>org.springframework.boot…...

电脑如何拦截端口号,实现阻断访问?

如果你弟弟喜欢玩游戏&#xff0c;你可以查询该应用占用的端口&#xff0c;结合以下方法即可阻断端口号&#xff0c;让弟弟好好学习&#xff0c;天天向上&#xff01; 拦截端口可以通过防火墙和路由器进行拦截 &#xff0c;以下是常用方法&#xff1a; 方法 1&#xff1a;使用…...

RK3588 安装ffmpeg6.1.2

在安装 ffmpeg 在 RK3588 开发板上时,你需要确保你的开发环境(例如 Ubuntu、Debian 或其他 Linux 发行版)已经设置好了交叉编译工具链,以便能够针对 RK3588 架构编译软件。以下是一些步骤和指导,帮助你安装 FFmpeg: 1. 安装依赖项 首先,确保你的系统上安装了所有必要的…...

SQL SELECT DISTINCT 语句

在 SQL 中&#xff0c;SELECT DISTINCT 语句用于从表中查询不重复的值。这对于需要从数据库检索唯一值时非常有用。DISTINCT 关键字会去除结果集中重复的行&#xff0c;只返回唯一的记录。 SELECT DISTINCT column1, column2, ... FROM table_name; column1, column2, ... 是…...

MELON的难题

MELON的难题 真题目录: 点击去查看 E 卷 200分题型 题目描述 MELON有一堆精美的雨花石(数量为n,重量各异),准备送给S和W。MELON希望送给俩人的雨花石重量一致,请你设计一个程序,帮MELON确认是否能将雨花石平均分配。 输入描述 第1行输入为雨花石个数: n,0 < n &l…...

Restful 接口设计规范

一、资源与 URL 1. 使用名词表示资源 URL 应该以名词为主&#xff0c;用来表示具体的资源&#xff0c;而不是动词。例如&#xff0c;/users 表示用户资源集合&#xff0c;/users/{id} 表示单个用户资源。 2. 采用复数形式 一般来说&#xff0c;资源的 URL 应该使用复数形式…...

Java后端高频面经——Spring、SpringBoot、MyBatis

Spring定义一个Bean有哪些方法&#xff1f;依赖注入有哪些方法&#xff1f; &#xff08;1&#xff09;定义Bean的方法 注解定义Bean&#xff0c;Component 用于标记一个类作为Spring的bean。当一个类被Component注解标记时&#xff0c;Spring会将其实例化为一个bean&#xff0…...

扩散模型中三种加入条件的方式:Vanilla Guidance,Classifier Guidance 以及 Classifier-Free Guidance

扩散模型主要包括两个过程&#xff1a;前向扩散过程和反向去噪过程。前向过程逐渐给数据添加噪声&#xff0c;直到数据变成纯噪声&#xff1b;反向过程则是学习如何从噪声中逐步恢复出原始数据。在生成过程中&#xff0c;模型从一个随机噪声开始&#xff0c;通过多次迭代去噪&a…...

Banana Pi OpenWRT One Wifi6 OpenWrt社区官方开源路由器评测

第一款不可破解、开源、版权软件、符合 FCC、CE 和 RoHS 的维修权路由器 OpenWRT项目今年已经20岁了&#xff0c;为了纪念这一时刻&#xff0c;Banana Pi OpenWrt One/AP-24.XY路由器开发系统已经上市。这是OpenWRT团队与硬件公司的第一个联合项目。选择 Banana Pi&#xff0c;…...

9.1go结构体

Go不是完全面向对象的&#xff0c;没有类的概念&#xff0c;所以结构体应该承担了更多的责任。 结构体定义 使用 type 和 struct 关键字定义&#xff1a; type Person struct { Name string Age int } 字段可以是任意类型&#xff0c;包括其他结构体或指针。 字段名以大写…...

Python:操作 Excel 折叠

💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...

Frozen-Flask :将 Flask 应用“冻结”为静态文件

Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是&#xff1a;将一个 Flask Web 应用生成成纯静态 HTML 文件&#xff0c;从而可以部署到静态网站托管服务上&#xff0c;如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...

什么是EULA和DPA

文章目录 EULA&#xff08;End User License Agreement&#xff09;DPA&#xff08;Data Protection Agreement&#xff09;一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA&#xff08;End User License Agreement&#xff09; 定义&#xff1a; EULA即…...

IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)

文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...

用docker来安装部署freeswitch记录

今天刚才测试一个callcenter的项目&#xff0c;所以尝试安装freeswitch 1、使用轩辕镜像 - 中国开发者首选的专业 Docker 镜像加速服务平台 编辑下面/etc/docker/daemon.json文件为 {"registry-mirrors": ["https://docker.xuanyuan.me"] }同时可以进入轩…...

视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)

前言&#xff1a; 最近在做行为检测相关的模型&#xff0c;用的是时空图卷积网络&#xff08;STGCN&#xff09;&#xff0c;但原有kinetic-400数据集数据质量较低&#xff0c;需要进行细粒度的标注&#xff0c;同时粗略搜了下已有开源工具基本都集中于图像分割这块&#xff0c…...

安宝特案例丨Vuzix AR智能眼镜集成专业软件,助力卢森堡医院药房转型,赢得辉瑞创新奖

在Vuzix M400 AR智能眼镜的助力下&#xff0c;卢森堡罗伯特舒曼医院&#xff08;the Robert Schuman Hospitals, HRS&#xff09;凭借在无菌制剂生产流程中引入增强现实技术&#xff08;AR&#xff09;创新项目&#xff0c;荣获了2024年6月7日由卢森堡医院药剂师协会&#xff0…...

A2A JS SDK 完整教程:快速入门指南

目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库&#xff…...

Java编程之桥接模式

定义 桥接模式&#xff08;Bridge Pattern&#xff09;属于结构型设计模式&#xff0c;它的核心意图是将抽象部分与实现部分分离&#xff0c;使它们可以独立地变化。这种模式通过组合关系来替代继承关系&#xff0c;从而降低了抽象和实现这两个可变维度之间的耦合度。 用例子…...

2025年渗透测试面试题总结-腾讯[实习]科恩实验室-安全工程师(题目+回答)

安全领域各种资源&#xff0c;学习文档&#xff0c;以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具&#xff0c;欢迎关注。 目录 腾讯[实习]科恩实验室-安全工程师 一、网络与协议 1. TCP三次握手 2. SYN扫描原理 3. HTTPS证书机制 二…...