Linux操作系统6- 线程1(线程基础,调用接口,线程优缺点)
上篇文章:Linux操作系统5- 补充知识(可重入函数,volatile关键字,SIGCHLD信号)-CSDN博客
本篇Gitee仓库:myLerningCode/l27 · 橘子真甜/Linux操作系统与网络编程学习 - 码云 - 开源中国 (gitee.com)
目录
一. Linux中的线程
1.1 线程的概念
1.2 OS管理线程的方式
1.3 线程与进程
二. Linux中创建线程 ⭐
1.1 pthread_create系统调用
1.2 线程之间的资源共享
1.3 线程的私有资源⭐
三. 线程的优缺点 ⭐
3.1 线程的优点
3.2 线程的缺点
一. Linux中的线程
1.1 线程的概念
进程是OS调度的基本单位,进程 = PCB + 进程对应数据与代码。而线程是进程内的一个执行流。
对于一个进程来说,进程是通过虚拟内存与页表的映射来访问物理内存的。所以一个进程的虚拟内存决定了这个进程所拥有的资源。
在linux中,对于一个进程,如果定义多个PCB指向同一个虚拟内存。让后让这些PCB指向不同的物理内存区域,这些PCB就是线程。
通过虚拟内存和页表的映射,我们对一个进程的资源进行了划分,这样一来,单个PCB的粒度就比整个进程粒度低。
关系如下图:
其中,所有的PCB + 进程虚拟内存 + 页表 + 进程对应数据代码 = 一个进程
单个PCB + 单个PCB占用的虚拟内存 + 页表 + 线程对应数据代码 = 一个线程
1.2 OS管理线程的方式
OS通过PCB来管理进程,同样所有的线程也需要被OS管理。
如果想要管理线程,首先需要设计特定的内核数据结构来表示线程对象,即设计一个TCB(线程控制块)。
Windows就是这样设计线程的。不过需要重新设计一个内核数据结构太麻烦了!
线程和进程有很多资源是一样的,比如id,状态,优先级,上下文,页表,虚拟内存,文件描述符...
因此Linux工程师使用直接复用进程的PCB,使用PCB来表示线程。而cpu只关心PCB不关心你是线程还是进程。
所以,线程在进程的地址空间中运行,拥有该进程一部分虚拟内存和资源。
1.3 线程与进程
进程是承担系统分配资源的基本单位(PCB,虚拟内存,页表,代码和数据等资源)
而线程是CPU调度的基本单位,在linux中称为轻量级进程\
总结:
1 在Linux中,没有严格的线程,只有轻量级进程,使用进程来模拟线程。
2 线程是cpu调度的基本单位,进程是系统分配资源的基本单位
linux使用轻量级进程模拟线程的好处:降低维护成本,提高效率
linux使用轻量级进程模型线程的坏处:用户只认线程,不认进程,所以linux需要为轻量级进程和线程之间提供线程库
二. Linux中创建线程 ⭐
1.1 pthread_create系统调用
使用man手册查看如下:

可以看到,使用这个接口需要在编译的时候带上参数 -pthread
//头文件
#include <pthread.h>
//库名称
pthreadint pthread_creat(pthread_t *thread, const pthread_attr_t *attr, void* (*start_routine)(void*), void *arg)//参数说明
thread 用于定义线程tid的地址,是输入输出型参数,调用后tid获取线程的id
attr 用于控制线程的属性,我们一般设置为0.表示默认属性
start_routine 线程运行函数的指针,即线程的执行流函数。调用后线程就执行该函数内部的代码
arg 线程函数start_routine的参数
测试代码:
makefile文件
test:test.cppg++ -o $@ $^ -lpthread -std=c++11
.PHONY:clean
clean:rm -rf test
在Linux中,使用线程必须要使用-l pthread用于链接原生线程库
test.cpp
#include <iostream>#include <unistd.h>
#include <pthread.h>void *start_routine(void *args)
{const char *name = static_cast<const char *>(args);while (true){std::cout << "我是新线程,我的名字是" << name << "pid为:" << getpid() << std::endl;sleep(1);}
}int main()
{pthread_t tid; // 定义线程tidpthread_create(&tid, nullptr, start_routine, (void *)"I am thread"); // 创建线程while (true){std::cout << "我是主线程,我的pid为:" << getpid() << std::endl;sleep(1);}return 0;
}
测试结果如下:

可以看到,主线程和新线程是并发执行的。
并且使用 ps axj 命令查看只有一个test进程,二使用 ps -aL查看线程可以看到test进程内有两个线程,它们的pid是由于的而LWP是不一样的!
CPU调度的时候,使用LWP来标识每一个线程。并且以进程中的主线程的LWP就是这个进程的pid。
1.2 线程之间的资源共享
线程被创建后,会共享全局变量,函数等资源。
测试代码:
#include <iostream>#include <unistd.h>
#include <pthread.h>// 全局变量
std::string name = "线程基础";// 全局函数
inline void f()
{std::cout << "调用全局函数" << " 读取全局变量:" << name << std::endl;
}void *start_routine(void *args)
{const char *name = static_cast<const char *>(args);while (true){std::cout << "我是新线程,我的名字是" << name << "pid为:" << getpid();f();sleep(1);}
}int main()
{pthread_t tid; // 定义线程tidpthread_create(&tid, nullptr, start_routine, (void *)"I am thread"); // 创建线程while (true){std::cout << "我是主线程,我的pid为:" << getpid();f();sleep(1);}return 0;
}
测试结果:

可以说明:线程能够调用全局函数,也可以读写全局变量。这说明两个线程之间如果想要进行通信是非常简单的。不像进程间通信需要通过OS创建资源,然后让两个进程看到同一份资源
线程之间共享 虚拟内存的代码区,全局变量区,堆区,文件,信号处理
1.3 线程的私有资源⭐
线程之间共享全局资源,每一个线程也有着自己独立的资源。
1 线程是CUP调度的基本单位,每一个线程有着自己的PCB,有自己独立的id,优先级
2 线程有着自己的上下文结构,这体现线程切换的动态属性。上下文是指线程切换的时候,cpu寄存器中的值,PCB的状态,PCB对应的堆栈结构。
3 每一个线程都有自己独立的栈结构。这个栈结构位于共享区
三. 线程的优缺点 ⭐
3.1 线程的优点
1 线程的创建消耗比进程低很多
2 线程切换与进程切换相比,需要OS工作更少,消耗低
为什么线程切换比进程切换开销小?
1 进程切换需要切换进程的虚拟内存,页表,切换所有的PCB和上下文
2 线程切换只需要切换一个PCB和线程自己的上下文
3 线程切换不太用更新catch,进程切换需要更新所有的catch。catch是高速缓存,CPU通过catch与内存交流,一个稳定的进程,会缓存很多热点数据,这样一来,catch的命中率高,线程切换不怎么影响catch的命中率。
如果切换了进程,需要全部更新catch,这个需要消耗较多的时间
3.2 线程的缺点
1 如果创建的线程过多,会造成一定的性能损失
2 线程会导致代码的健壮性降低,因为一个线程异常退出了,会导致整个进程退出,线程崩溃了,整个进程会崩溃
3 线程之间共享资源,需要考虑访问控制和同步互斥问题
相关文章:
Linux操作系统6- 线程1(线程基础,调用接口,线程优缺点)
上篇文章:Linux操作系统5- 补充知识(可重入函数,volatile关键字,SIGCHLD信号)-CSDN博客 本篇Gitee仓库:myLerningCode/l27 橘子真甜/Linux操作系统与网络编程学习 - 码云 - 开源中国 (gitee.com) 目录 一.…...
每周一个网络安全相关工具——MetaSpLoit
一、Metasploit简介 Metasploit(MSF)是一款开源渗透测试框架,集成了漏洞利用、Payload生成、后渗透模块等功能,支持多种操作系统和硬件平台。其模块化设计(如exploits、auxiliary、payloads等)使其成为全球…...
MAC-禁止百度网盘自动升级更新
通过终端禁用更新服务(推荐) 此方法直接移除百度网盘的自动更新组件,无需修改系统文件。 步骤: 1.关闭百度网盘后台进程 按下 Command + Space → 输入「活动监视器」→ 搜索 BaiduNetdisk 或 UpdateAgent → 结束相关进程。 2.删除自动更新配置文件 打开终端…...
【C语言】自定义类型:结构体,联合,枚举(上)
前言:在C语言中除了我们经常使用的数据(int,float,double类型)等这些类型以外,还有一种类型就是自定义类型,它包括结构体,联合体,枚举类型。为什么要有这种自定义类型呢?假设我们想描…...
SQLiteStudio:一款免费跨平台的SQLite管理工具
SQLiteStudio 是一款专门用于管理和操作 SQLite 数据库的免费工具。它提供直观的图形化界面,简化了数据库的创建、编辑、查询和维护,适合数据库开发者和数据分析师使用。 功能特性 SQLiteStudio 提供的主要功能包括: 免费开源,可…...
Mysql配置文件My.cnf(my.ini)配置参数说明
一、my.cnf 配置文件路径:/etc/my.cnf,在调整了该文件内容后,需要重启mysql才可生效。 1、主要参数 basedir path # 使用给定目录作为根目录(安装目录)。 datadir path # 从给定目录读取数据库文件。 pid-file filename # 为mysq…...
聊天模型集成指南
文章目录 聊天模型集成指南Anthropic聊天模型集成PaLM2聊天模型PaLM2API的核心功能OpenAl聊天模型集成聊天模型集成指南 随着GPT-4等大语言模型的突破,聊天机器人已经不仅仅是简单的问答工具,它们现在广泛应用于客服、企业咨询、电子商务等多种场景,为用户提供准确、快速的反…...
搭建农产品管理可视化,助力农业智能化
利用图扑 HT 搭建农产品管理可视化平台,实现从生产到销售的全流程监控。平台通过物联网传感器实时采集土壤湿度、温度、光照等数据,支持智慧大棚的灌溉、施肥、病虫害防治等功能。同时,农产品调度中心大屏可展示市场交易数据、库存状态、物流…...
tee命令
tee 是一个在 Unix/Linux 系统中常用的命令,它用于读取标准输入(stdin),并将其内容同时输出到标准输出(stdout)和文件中。它常用于将命令的输出保存到文件的同时,也显示在终端屏幕上。 基本语法…...
国自然面上项目|基于海量多模态影像深度学习的肝癌智能诊断研究|基金申请·25-03-07
小罗碎碎念 今天和大家分享一个国自然面上项目,执行年限为2020.01~2023.12,直接费用为65万元。 该项目旨在利用多模态医学影像,通过深度学习技术,解决肝癌诊断中的难题,如影像的快速配准融合、海量特征筛选…...
「勾芡」和「淋明油」是炒菜收尾阶段提升菜品口感和观感的关键操作
你提到的「勾芡」和「淋明油」是炒菜收尾阶段提升菜品口感和观感的关键操作,背后涉及食品科学中的物理化学变化。以下从原理到实操的深度解析: 一、勾芡:淀粉的“精密控温游戏” 1. 科学原理 淀粉糊化(Gelatinization࿰…...
ROS云课三分钟-差动移动机器人导航报告如何撰写-及格边缘疯狂试探
提示词:基于如上所有案例并结合roslaunch teb_local_planner_tutorials robot_diff_drive_in_stage.launch和上面所有对话内容,设计一个差速移动机器人仿真实验,并完成报告的全文撰写。 差速移动机器人导航仿真实验报告 一、实验目的 验证 T…...
应用案例 | 精准控制,高效运行—宏集智能控制系统助力SCARA机器人极致性能
概述 随着工业4.0的深入推进,制造业对自动化和智能化的需求日益增长。传统生产线面临空间不足、效率低下、灵活性差等问题,尤其在现有工厂改造项目中,如何在有限空间内实现高效自动化成为一大挑战。 此次项目的客户需要在现有工厂基础上进行…...
蓝桥备赛(16)- 树
一、树的概念 1.1 树的定义 1)树型结构(一对多)是⼀类重要的非线性数据结构 2 )有⼀个特殊的结点,称为根结点,根结点没有前驱结点 3)除了根节点外 , 其余结点被分成 M(M…...
黑马测试mysql基础学习
视频来源:软件测试工程师所需的MySQL数据库技术,mysql系统精讲课后练习_哔哩哔哩_bilibili 环境准备: 虚拟机Linux服务器安装mysql数据库。本机安装Navicat。使Navicat连接虚拟机的数据库。(麻烦一点的是Navicat连接虚拟机的数据…...
ROS2-话题学习
强烈推荐教程: 《ROS 2机器人开发从入门到实践》3.2.2订阅小说并合成语音_哔哩哔哩_bilibili 构建功能包 # create package demo_python_pkg ros2 pkg create --build-type ament_python --license Apache-2.0 demo_python_pkg 自己写的代码放在./demo_python_pkg/…...
C++指针的基本认识
1.数组做函数参数 首先,所有传递给函数的参数都是通过传值方式进行的,传递给函数的都是参数的一份拷贝。 接着,当传递的参数是一个指向某个变量的指针时,函数将对该指针执行间接访问操作(拷贝指针,并访问所指向的内容),则函数就可以修改指向的变量。 2.一维数组 数组名…...
TypeScript系列06-模块系统与命名空间
1. ES 模块与 CommonJS 互操作性 1.1 模块解析策略 TypeScript 提供多种模块解析策略,每种策略针对不同的运行环境和开发场景优化: // tsconfig.json {"compilerOptions": {"moduleResolution": "node16", // 或 "…...
Linux(Centos 7.6)命令详解:zip
1.命令作用 打包和压缩(存档)文件(package and compress (archive) files);该程序用于打包一组文件进行分发;存档文件;通过临时压缩未使用的文件或目录来节省磁盘空间;且压缩文件可以在Linux、Windows 和 macOS中轻松提取。 2.命…...
es-使用easy-es时如何指定索引库
在对应的实体类中,通过注解IndexName指定。 如上图,指定的索引库就是problems,那么之后我使用easy-es时都是针对该索引库进行增删改查。...
【OSG学习笔记】Day 18: 碰撞检测与物理交互
物理引擎(Physics Engine) 物理引擎 是一种通过计算机模拟物理规律(如力学、碰撞、重力、流体动力学等)的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互,广泛应用于 游戏开发、动画制作、虚…...
相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了: 这一篇我们开始讲: 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下: 一、场景操作步骤 操作步…...
Neo4j 集群管理:原理、技术与最佳实践深度解析
Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...
Angular微前端架构:Module Federation + ngx-build-plus (Webpack)
以下是一个完整的 Angular 微前端示例,其中使用的是 Module Federation 和 npx-build-plus 实现了主应用(Shell)与子应用(Remote)的集成。 🛠️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...
Go 并发编程基础:通道(Channel)的使用
在 Go 中,Channel 是 Goroutine 之间通信的核心机制。它提供了一个线程安全的通信方式,用于在多个 Goroutine 之间传递数据,从而实现高效的并发编程。 本章将介绍 Channel 的基本概念、用法、缓冲、关闭机制以及 select 的使用。 一、Channel…...
C++课设:简易日历程序(支持传统节假日 + 二十四节气 + 个人纪念日管理)
名人说:路漫漫其修远兮,吾将上下而求索。—— 屈原《离骚》 创作者:Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊) 专栏介绍:《编程项目实战》 目录 一、为什么要开发一个日历程序?1. 深入理解时间算法2. 练习面向对象设计3. 学习数据结构应用二、核心算法深度解析…...
GO协程(Goroutine)问题总结
在使用Go语言来编写代码时,遇到的一些问题总结一下 [参考文档]:https://www.topgoer.com/%E5%B9%B6%E5%8F%91%E7%BC%96%E7%A8%8B/goroutine.html 1. main()函数默认的Goroutine 场景再现: 今天在看到这个教程的时候,在自己的电…...
【LeetCode】3309. 连接二进制表示可形成的最大数值(递归|回溯|位运算)
LeetCode 3309. 连接二进制表示可形成的最大数值(中等) 题目描述解题思路Java代码 题目描述 题目链接:LeetCode 3309. 连接二进制表示可形成的最大数值(中等) 给你一个长度为 3 的整数数组 nums。 现以某种顺序 连接…...
Scrapy-Redis分布式爬虫架构的可扩展性与容错性增强:基于微服务与容器化的解决方案
在大数据时代,海量数据的采集与处理成为企业和研究机构获取信息的关键环节。Scrapy-Redis作为一种经典的分布式爬虫架构,在处理大规模数据抓取任务时展现出强大的能力。然而,随着业务规模的不断扩大和数据抓取需求的日益复杂,传统…...
永磁同步电机无速度算法--基于卡尔曼滤波器的滑模观测器
一、原理介绍 传统滑模观测器采用如下结构: 传统SMO中LPF会带来相位延迟和幅值衰减,并且需要额外的相位补偿。 采用扩展卡尔曼滤波器代替常用低通滤波器(LPF),可以去除高次谐波,并且不用相位补偿就可以获得一个误差较小的转子位…...
