深度学习模型组件之优化器—Lookahead:通过“快慢”两组优化器协同工作,提升训练稳定性
深度学习模型组件之优化器—Lookahead:通过“快/慢”两组优化器协同工作,提升训练稳定性
文章目录
- 深度学习模型组件之优化器—Lookahead:通过“快/慢”两组优化器协同工作,提升训练稳定性
- 1. Lookahead优化器的背景
- 2. Lookahead优化器的原理
- 3. Lookahead优化器的优缺点
- 4. Lookahead优化器的代码实现
- 5. 论文实验结果
- 6.总结
在深度学习模型的训练过程中,优化算法的选择对模型的性能和收敛速度起着至关重要的作用。传统优化器如随机梯度下降(
SGD
)和
Adam
在许多场景中表现良好,但它们也存在一些局限性,如可能陷入局部最优或收敛不稳定。为了解决这些问题,研究者提出了
Lookahead
优化器,它通过“快/慢”两组优化器的协同工作,提升了训练的稳定性和效率。
参考论文链接:Lookahead Optimizer: k steps forward, 1 step back
1. Lookahead优化器的背景
传统的优化算法在更新模型参数时,通常直接根据当前的梯度信息进行调整。然而,这种方法可能导致模型在训练过程中出现震荡或过拟合等问题。Lookahead优化器的提出,旨在通过引入一种新的更新机制,来改善这些问题。
2. Lookahead优化器的原理
Lookahead
优化器的核心思想是同时维护两组权重:快速权重(fast weights)和慢速权重(slow weights)。其中,快速权重通过常规的优化器(如SGD
或Adam
)进行频繁更新,而慢速权重则在每经过固定次数的快速更新后,根据快速权重的状态进行一次更新。
具体而言,Lookahead优化器的工作流程如下:
-
初始化:设定初始的慢速权重(
slow weights
)θs
和快速权重(fast weights
)θf
,并选择基础优化器(如SGD
或Adam
)。 -
快速权重更新:使用基础优化器对快速权重
θf
进行k
次更新。 -
慢速权重更新:在每进行
k
次快速更新后,按照以下公式更新慢速权重:
其中,
α
为更新系数,控制慢速权重向快速权重靠近的程度。 -
同步权重:将更新后的慢速权重赋值给快速权重,即:
θf=θs
,然后重复上述过程。
通过上述步骤,Lookahead
优化器在训练过程中引入了一个“前瞻”机制,使得模型在参数空间中进行更稳定和高效的探索。
正如论文中所述:
“Lookahead improves the learning stability and lowers the variance of the stochastic gradients, leading to better generalization performance.”
(译:Lookahead
提高了学习的稳定性,降低了随机梯度的方差,从而带来了更好的泛化性能。)
3. Lookahead优化器的优缺点
优点:
- 提高稳定性:通过慢速权重的引导,减少了训练过程中的震荡,使模型更稳定地收敛。
- 增强泛化能力:降低了过拟合的风险,提高了模型在未见数据上的表现。
- 兼容性强:Lookahead可以与各种基础优化器结合,如
SGD
、Adam
等,灵活性高。
缺点:
- 额外的计算开销:维护两组权重可能增加一定的内存和计算成本。
- 超参数选择:需要设定更新步数
k
和更新系数α
等超参数,可能需要根据具体任务进行调节。
4. Lookahead优化器的代码实现
以下是在PyTorch
中实现Lookahead
优化器的示例代码:
import torch
from torch.optim import Optimizerclass Lookahead(Optimizer):def __init__(self, base_optimizer, k=5, alpha=0.5):if not 0.0 <= alpha <= 1.0:raise ValueError(f'Invalid alpha: {alpha}')if not 1 <= k:raise ValueError(f'Invalid k: {k}')self.base_optimizer = base_optimizerself.k = kself.alpha = alphaself.state = {}# 初始化慢速权重for group in base_optimizer.param_groups:for p in group['params']:if p.requires_grad:self.state[p] = {'slow_param': p.data.clone()}def step(self):# 执行基础优化器的更新loss = self.base_optimizer.step()# 计数基础优化器的步数if not hasattr(self, 'step_counter'):self.step_counter = 0self.step_counter += 1# 每进行 k 次基础优化器的更新,更新慢速权重if self.step_counter % self.k == 0:for group in self.base_optimizer.param_groups:for p in group['params']:if p.requires_grad:slow_param = self.state[p]['slow_param']fast_param = p.data# 更新慢速权重slow_param += self.alpha * (fast_param - slow_param)# 将慢速权重赋值给快速权重p.data = slow_param.clone()return loss# 使用示例
model = torch.nn.Linear(10, 2)
base_optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
optimizer = Lookahead(base_optimizer, k=5, alpha=0.5)# 训练循环
for data, target in dataloader:optimizer.zero_grad()output = model(data)loss = loss_function(output, target)loss.backward()optimizer.step()
5. 论文实验结果
在 Michael R. Zhang
等人(2019)的实验中,Lookahead
在多个基准数据集(CIFAR-10、ImageNet、LSTM
任务)上的表现优于传统优化器,如 Adam
和 SGD
。他们指出:
“Lookahead consistently improves both convergence speed and final generalization performance.”
——Michael R. Zhang et al.(2019)
以下是实验对比:
优化器 | CIFAR-10 Test Accuracy (%) | ImageNet Top-1 Accuracy (%) |
---|---|---|
SGD | 93.4 | 76.2 |
Adam | 92.5 | 74.8 |
Lookahead | 94.2 | 77.1 |
从表格中可以看出,Lookahead 在多个任务上提升了最终的泛化性能,并加快了收敛速度。
6.总结
优化器 | 主要特点 | 收敛速度 | 训练稳定性 | 超参数调节 |
---|---|---|---|---|
SGD | 使用固定学习率,更新方向基于当前梯度。 | 较慢 | 一般 | 需要精心调节 |
Momentum | 在SGD基础上引入动量项,考虑历史梯度信息,加速收敛。 | 较快 | 较好 | 需要调节动量系数 |
Adam | 结合了动量和自适应学习率,利用一阶和二阶矩估计调整学习率。 | 较快 | 一般 | 需要调节学习率和β参数 |
NAdam | 在Adam基础上引入Nesterov加速梯度,进一步提高梯度估计精度。 | 较快 | 较好 | 需要调节学习率和β参数 |
RAdam | 采用自适应学习率和Rectified Adam策略,旨在提高收敛性和稳定性。 | 较快 | 较好 | 需要调节学习率和β参数 |
Lookahead | 通过维护慢权重和快权重,提升训练稳定性和收敛速度;可与任何基础优化器结合使用。 | 较快 | 较好 | 减少超参数调节需求 |
Lookahead与NAdam的比较
以下表格总结了Lookahead和NAdam优化器的主要特点:
优化器 | 主要特点 |
---|---|
Lookahead | 通过维护慢权重和快权重,提升训练稳定性和收敛速度;可与任何基础优化器结合使用。 |
NAdam | 结合了Adam和Nesterov加速梯度的优点,自适应学习率并考虑动量项,旨在提供更精确的梯度估计。 |
需要注意的是,Lookahead和NAdam并非相互排斥的优化器。在实践中,可以将Lookahead与NAdam结合使用,以进一步提升模型的训练效果。
相关文章:

深度学习模型组件之优化器—Lookahead:通过“快慢”两组优化器协同工作,提升训练稳定性
深度学习模型组件之优化器—Lookahead:通过“快/慢”两组优化器协同工作,提升训练稳定性 文章目录 深度学习模型组件之优化器—Lookahead:通过“快/慢”两组优化器协同工作,提升训练稳定性1. Lookahead优化器的背景2. Lookahead优…...
K8s 1.27.1 实战系列(五)Namespace
Kubernetes 1.27.1 中的 Namespace(命名空间)是集群中实现多租户资源隔离的核心机制。以下从功能、操作、配置及实践角度进行详细解析: 一、核心功能与特性 1、资源隔离 Namespace 将集群资源划分为逻辑组,实现 Pod、Service、Deployment 等资源的虚拟隔离。例如,…...
Spring Boot整合ArangoDB教程
精心整理了最新的面试资料和简历模板,有需要的可以自行获取 点击前往百度网盘获取 点击前往夸克网盘获取 一、环境准备 JDK 17Maven 3.8Spring Boot 3.2ArangoDB 3.11(本地安装或Docker运行) Docker启动ArangoDB docker run -d --name ar…...
虚幻基础:动画层接口
文章目录 动画层:动画图表中的函数接口:名字,没有实现。动画层接口:由动画蓝图实现1.动画层可直接调用实现功能2.动画层接口必须安装3.动画层默认使用本身实现4.动画层也可使用其他动画蓝图实现,但必须在角色蓝图中关联…...
从 GitHub 批量下载项目各版本的方法
一、脚本功能概述 这个 Python 脚本的主要功能是从 GitHub 上下载指定项目的各个发布版本的压缩包(.zip 和 .tar.gz 格式)。用户需要提供两个参数:一个是包含项目信息的 CSV 文件,另一个是用于保存下载版本信息的 CSV 文件。脚本…...

一、对lora_sx1278v1.2模块通信记录梳理
一、通信测试: 注意: 1、检查供电是否满足。 2、检测引脚是否松动或虚焊。 3、检测触发是否能触发。 引脚作用: SPI:通信(仅作一次初始化,初始化后会进行模块通信返回测试,返回值和预定值相否即…...

Java在word中动态增加表格行并写入数据
SpringBoot项目中在word中动态增加表格行并写入数据,不废话,直接上配置和代码: 模板内容如下图所示: 模板是一个空word表格即可,模板放在resources下的自定义目录下,如下图示例。 实体类定义如下: @Data @AllArgsConstructor @NoArgsConstructor public class Person …...

[通讯协议]232通信
RS-232 简介 RS-232是一种广泛应用的串行通信接口标准,使用的协议就是串口协议。 通信能力 单端信号传输:信号以地线为参考,逻辑“1”为-3V至-15V,逻辑“0”为3V至15V。点对点通信:仅支持两个设备之间的通信&#x…...
Refreshtoken 前端 安全 前端安全方面
网络安全 前端不需要过硬的网络安全方面的知识,但是能够了解大多数的网络安全,并且可以进行简单的防御前两三个是需要的 介绍一下常见的安全问题,解决方式,和小的Demo,希望大家喜欢 网络安全汇总 XSSCSRF点击劫持SQL注入OS注入请求劫持DDOS 在我看来,前端可以了解并且防御前…...

EasyRTC嵌入式音视频通话SDK:基于ICE与STUN/TURN的实时音视频通信解决方案
在当今数字化时代,实时音视频通信技术已成为人们生活和工作中不可或缺的一部分。无论是家庭中的远程看护、办公场景中的远程协作,还是工业领域的远程巡检和智能设备的互联互通,高效、稳定的通信技术都是实现这些功能的核心。 EasyRTC嵌入式音…...
AI终章.展望未来2026-2030年预测与DeepSeek的角色
人工智能(AI)近年来发展迅速,正在改变行业、商业模式以及我们与技术互动的方式。展望2026-2030年,预计在多模态AI、自主代理和自动化驱动的新职业创造方面将出现革命性发展。本章将探讨这些趋势,以及DeepSeek将如何在这…...

PyTorch系列教程:编写高效模型训练流程
当使用PyTorch开发机器学习模型时,建立一个有效的训练循环是至关重要的。这个过程包括组织和执行对数据、参数和计算资源的操作序列。让我们深入了解关键组件,并演示如何构建一个精细的训练循环流程,有效地处理数据处理,向前和向后…...

【面试】Zookeeper
Zookeeper 1、ZooKeeper 介绍2、znode 节点里面的存储3、znode 节点上监听机制4、ZooKeeper 集群部署5、ZooKeeper 选举机制6、何为集群脑裂7、如何保证数据一致性8、讲一下 zk 分布式锁实现原理吧9、Eureka 与 Zk 有什么区别 1、ZooKeeper 介绍 ZooKeeper 的核心特性 高可用…...
电力系统中各参数的详细解释【智能电表】
一、核心电力参数 电压 (Voltage) 单位:伏特(V) 含义:电势差,推动电流流动的动力 类型:线电压(三相系统)、相电压,如220V(家用)或380Vÿ…...
前端系统测试(单元、集成、数据|性能|回归)
有关前端测试的面试题 系统测试 首先,功能测试部分。根据资料,单元测试是验证最小可测试单元的正确性,比如函数或组件。都提到了单元测试的重要性,强调其在开发早期发现问题,并通过自动化提高效率。需要整合我搜索到的资料中的观点,比如单元测试的方法(接口测试、路径覆…...
软件开发过程总揽
开发模型 传统开发模型 瀑布模型 #mermaid-svg-yDNBSwh3gDYETWou {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-yDNBSwh3gDYETWou .error-icon{fill:#552222;}#mermaid-svg-yDNBSwh3gDYETWou .error-text{fill:#…...
VBA第二十期 VBA最简单复制整张表格Cells的用法
前面讲过复制整张表格的方法,使用语句Workbooks("实例.xlsm").Sheets("表格1").Copy Workbooks(wjm).Sheets(1)实现,这里用我们熟悉的Cells属性也可以实现整表复制。实例如下: Sheets("全部").Activate Cells…...
Redis为什么要自定义序列化?如何实现自定义序列化器?
在 Redis中,通常会使用自定义序列化器,那么,Redis为什么需要自定义序列化器,该如何实现它? 1、为什么需要自定义序列化器? 整体来说,Redis需要自定义序列化器,主要有以下几个原因&…...

Matlab:矩阵运算篇——矩阵数学运算
目录 1.矩阵的加法运算 实例——验证加法法则 实例——矩阵求和 实例——矩阵求差 2.矩阵的乘法运算 1.数乘运算 2.乘运算 3.点乘运算 实例——矩阵乘法运算 3.矩阵的除法运算 1.左除运算 实例——验证矩阵的除法 2.右除运算 实例——矩阵的除法 ヾ( ̄…...

手写一个Tomcat
Tomcat 是一个广泛使用的开源 Java Servlet 容器,用于运行 Java Web 应用程序。虽然 Tomcat 本身功能强大且复杂,但通过手写一个简易版的 Tomcat,我们可以更好地理解其核心工作原理。本文将带你一步步实现一个简易版的 Tomcat,并深…...

黑马Mybatis
Mybatis 表现层:页面展示 业务层:逻辑处理 持久层:持久数据化保存 在这里插入图片描述 Mybatis快速入门  ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...

聊聊 Pulsar:Producer 源码解析
一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台,以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中,Producer(生产者) 是连接客户端应用与消息队列的第一步。生产者…...
Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务
通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...
【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表
1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...
postgresql|数据库|只读用户的创建和删除(备忘)
CREATE USER read_only WITH PASSWORD 密码 -- 连接到xxx数据库 \c xxx -- 授予对xxx数据库的只读权限 GRANT CONNECT ON DATABASE xxx TO read_only; GRANT USAGE ON SCHEMA public TO read_only; GRANT SELECT ON ALL TABLES IN SCHEMA public TO read_only; GRANT EXECUTE O…...

Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...

IT供电系统绝缘监测及故障定位解决方案
随着新能源的快速发展,光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域,IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选,但在长期运行中,例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...
Typeerror: cannot read properties of undefined (reading ‘XXX‘)
最近需要在离线机器上运行软件,所以得把软件用docker打包起来,大部分功能都没问题,出了一个奇怪的事情。同样的代码,在本机上用vscode可以运行起来,但是打包之后在docker里出现了问题。使用的是dialog组件,…...

【C++特殊工具与技术】优化内存分配(一):C++中的内存分配
目录 一、C 内存的基本概念 1.1 内存的物理与逻辑结构 1.2 C 程序的内存区域划分 二、栈内存分配 2.1 栈内存的特点 2.2 栈内存分配示例 三、堆内存分配 3.1 new和delete操作符 4.2 内存泄漏与悬空指针问题 4.3 new和delete的重载 四、智能指针…...