【Linux】详谈 基础I/O
目录
一、理解文件
狭义的理解:
广义理解:
文件操作的归类认知
系统角度
二、系统文件I/O
2.1 标志位的传递
系统级接口open
编辑
open返回值
写入文件
读文件
三、文件描述符
3.1(0 & 1 & 2)
3.2 文件描述符的分配规则
3.3 重定向
3.4 dup2系统调用
标准错误
一、理解文件
文件类型:
- 普通文件:包含用户数据,如文本文件、二进制可执行文件、图像文件、音频文件等。文本文件可以用文本编辑器打开查看和编辑,二进制文件则包含了机器可执行的指令或特定格式的数据。
- 目录文件:用于组织和管理其他文件和目录,类似于 Windows 系统中的文件夹。它包含了指向其他文件和目录的索引信息。
- 设备文件:在Linux中,硬件设备也被视为文件,分为字符设备文件和块设备文件。字符设备文件通常用于像串口、终端这样以字符流方式进行数据传输的设备;块设备文件用于如硬盘、U盘等以块为单位进行数据读写的设备。
- 链接文件:类似于 Windows系统中的快捷方式,分为硬链接和软链接(符号链接)。硬链接是同一个文件的多个名称,它们共享相同的 inode号;软链接则是指向另一个文件的特殊文件,有自己独立的 inode 号。
- 管道文件:主要用于进程间通信,允许两个或多个进程之间进行数据的传递和共享。
- 套接字文件:用于网络通信或本地进程间通信,是网络编程和一些进程间通信机制的重要组成部分。
狭义的理解:
• 文件在磁盘里
• 磁盘是永久性存储介质,因此文件在磁盘上的存储是永久性的
• 磁盘是外设(即是输出设备也是输入设备)
• 磁盘上的文件 本质是对文件的所有操作,都是对外设的输入和输出 简称 IO
广义理解:
Linux 下一切皆文件(键盘、显示器、网卡、磁盘…… 这些都是抽象化的过程)
文件操作的归类认知
• 对于 0KB 的空文件是占用磁盘空间的
• 文件是文件属性(元数据)和文件内容的集合(文件 = 属性(元数据)+ 内容)
• 所有的文件操作本质是文件内容操作和文件属性操作
系统角度
• 对文件的操作本质是进程对文件的操作
• 磁盘的管理者是操作系统
• 文件的读写本质不是通过 C 语言 / C++ 的库函数来操作的(这些库函数只是为用户提供方便),而、是通过文件相关的系统调用接口来实现的
二、系统文件I/O
打开文件的方式不仅仅是fopen,ifstream等流式,语言层的方案,其实系统才是打开文件最底层的方案。不过,在学习系统文件IO之前,先要了解下如何给函数传递标志位,该方法在系统文件IO接口中会使用到:
2.1 标志位的传递
系统级接口open
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
int open(const char *pathname, int flags);
int open(const char *pathname, int flags, mode_t mode);
pathname: 要打开或创建的⽬标⽂件
flags: 打开⽂件时,可以传⼊多个参数选项,⽤下⾯的⼀个或者多个常量进⾏“或”运算,构成
flags。
参数:O_RDONLY: 只读打开O_WRONLY: 只写打开O_RDWR : 读,写打开这三个常量,必须指定⼀个且只能指定⼀个O_CREAT : 若⽂件不存在,则创建它。需要使⽤mode选项,来指明新⽂件的访问
权限O_APPEND: 追加写
返回值:成功:新打开的⽂件描述符失败:-1
open返回值
在认识返回值之前,先来认识⼀下两个概念: 系统调⽤ 和 库函数
• 上⾯的 fopen fclose fread fwrite 都是C标准库当中的函数,我们称之为库函数(libc)。
• ⽽ open close read write lseek 都属于系统提供的接⼝,称之为系统调⽤接⼝

系统调⽤接⼝和库函数的关系,⼀⽬了然。
所以,可以认为, f# 系列的函数,都是对系统调⽤的封装,⽅便⼆次开发。
写入文件
清空并写入
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <string.h>
#include <unistd.h>int main()
{umask(0);int fd=open("log.txt",O_CREAT | O_WRONLY | O_TRUNC,0666);if(fd<0){perror("open");return 1;}printf("fd: %d\n",fd);const char* msg="hello hhh";int cnt=1;while(cnt--){write(fd,msg,strlen(msg));}close(fd);return 0;
}
追加并写入
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <string.h>
#include <unistd.h>int main()
{umask(0);int fd=open("log.txt",O_CREAT | O_WRONLY | O_TRUNC ,0666);if(fd<0){perror("open");return 1;}printf("fd: %d\n",fd);const char* msg="hello bbbb";int cnt=1;while(cnt--){write(fd,msg,strlen(msg));}close(fd);return 0;
}
注意上面的加入函数umask(0);就可以自己规范权限。
读文件
int main()
{int fd = open("myfile", O_RDONLY);if(fd < 0){perror("open");return 1;} const char *msg = "hello bit!\n";char buf[1024];while(1)
{ssize_t s = read(fd, buf, strlen(msg));//类⽐writeif(s > 0){printf("%s", buf);}else{break;}} close(fd);return 0;
}
这里的接口都是系统调用,而上面的c语言的文件操作都是语言层面上的调用。其实语言层里面的调用里面都封装着系统级别的调用。
三、文件描述符
文件描述符是一个非负整数,它是 Linux 内核为了管理文件操作而给每个打开的文件或其他 I/O 资源(如管道、套接字等)分配的一个标识符。可以将其理解为一个指向内核中代表打开文件的数据结构的索引,通过这个索引,程序能够方便地对相应的文件或资源进行各种读写等操作。
在操作系统层面接口层面,系统只认文件描述符(fd)。所有根据前面所讲,语言层面肯定封装了文件fd。
3.1(0 & 1 & 2)
• Linux进程默认情况下会有3个缺省打开的文件描述符,分别是标准输入0, 标准输出1, 标准错误2.
• 0,1,2对应的物理设备一般是:键盘,显示器,显示器
所以输⼊输出还可以采⽤如下⽅式:
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <string.h>
int main()
{char buf[1024];ssize_t s = read(0, buf, sizeof(buf));if(s > 0){buf[s] = 0;write(1, buf, strlen(buf));write(2, buf, strlen(buf));}return 0;
}

而现在知道,文件描述符就是从0开始的小整数。当我们打开文件时,操作系统在内存中要创建相应的数据结构来描述目标文件。于是就有了file结构体。表示一个已经打开的文件对象。而进程执行open系统调用,所以必须让进程和文件关联起来。每个进程都有一个指针*files, 指向一张表files_struct,该表最重要的部分就是包含一个指针数组,每个元素都是一个指向打开文件的指针!所以,本质上,文件描述符就是该数组的下标。所以,只要拿着文件描述符,就可以找到对应的文件。
对于以上原理结论我们可通过内核源码验证:
首先要找到task_struct 结构体在内核中为位置,地址为: /usr/src/kernels/3.10.0-1160.71.1.el7.x86_64/include/linux/sched.h (3.10.0-1160.71.1.el7.x86_64是内核版本,可使用 uname -a 自行查看服务器配置, 因为这个文件夹只有一个,所以也不用刻意去分辨,内核版本其实也随意)


3.2 文件描述符的分配规则
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
int main()
{int fd = open("myfile", O_RDONLY);if(fd < 0){perror("open");return 1;}printf("fd: %d\n", fd);close(fd);return 0;
}
输出发现是fd: 3
关闭0或者2,在看
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
int main()
{close(0);//close(2);int fd = open("myfile", O_RDONLY);if(fd < 0){perror("open");return 1;}printf("fd: %d\n", fd);close(fd);return 0;
}
发现是结果是: fd: 0 或者 fd 2 ,可⻅,文件描述符的分配规则:在files_struct数组当中,找到当前没有被使⽤的最小的⼀个下标,作为新的文件描述符。
3.3 重定向
那如果关闭1呢?看代码:
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdlib.h>
int main()
{close(1);int fd = open("myfile", O_WRONLY|O_CREAT, 00644);if(fd < 0){perror("open");return 1;}printf("fd: %d\n", fd);fflush(stdout);close(fd);exit(0);
}
此时,我们发现,本来应该输出到显⽰器上的内容,输出到了⽂件 myfile 当中,其中,fd=1。这种现象叫做输出重定向。常见的重定向有: > ,>> ,<
重定向的本质

3.4 dup2系统调用

int main() {// 打开文件,如果文件不存在则创建,同时以读写模式打开int fd = open("./log", O_CREAT | O_RDWR);if (fd < 0) {perror("open");return 1;}// 关闭标准输出文件描述符close(1);// 将文件描述符 fd 复制到标准输出文件描述符(1)dup2(fd, 1);for (;;) {char buf[1024] = {0};// 从标准输入读取数据到缓冲区ssize_t read_size = read(0, buf, sizeof(buf) - 1);if (read_size < 0) {perror("read");break;}// 输出读取到的内容printf("%s", buf);// 刷新标准输出缓冲区fflush(stdout);}return 0;
}
标准错误
向标准输出和标准错误里打信息

标准输出和标准错误都是显示器文件,想把标准输出和标准错误的信息重定向一个文件。这样是不行的。可以发现两者在两个文件中

用下面这个指令进行重定向,重定向到了两个文件

用下面这个指令可以把两者重定向到一个文件
存在一个标准错误,可以通过重定向能力把常规消息和错误消息进行分离。以方便后续用户进行操作好区分。
本篇完,下篇见!

相关文章:
【Linux】详谈 基础I/O
目录 一、理解文件 狭义的理解: 广义理解: 文件操作的归类认知 系统角度 二、系统文件I/O 2.1 标志位的传递 系统级接口open 编辑 open返回值 写入文件 读文件 三、文件描述符 3.1(0 & 1 & 2) 3.2 文件描…...
爬虫案例七Python协程爬取视频
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、Python协程爬取视频 前言 提示:这里可以添加本文要记录的大概内容: 爬虫案例七协程爬取视频 提示:以下是本篇文章正文…...
[20250304] 关于 RISC-V芯片 的介绍
[20250304] 关于 RISC-V芯片 的介绍 1. 调研报告 一、RISC-V 芯片结构分析 RISC-V 芯片基于开源指令集架构(ISA),其核心优势在于模块化设计与高度灵活性。 指令集架构 基础指令集:包含 RV32I(32 位)、R…...
一学就会:A*算法详细介绍(Python)
📢本篇文章是博主人工智能学习以及算法研究时,用于个人学习、研究或者欣赏使用,并基于博主对相关等领域的一些理解而记录的学习摘录和笔记,若有不当和侵权之处,指出后将会立即改正,还望谅解。文章分类在&am…...
Hadoop、Hive、Spark的关系
Part1:Hadoop、Hive、Spark关系概览 1、MapReduce on Hadoop 和spark都是数据计算框架,一般认为spark的速度比MR快2-3倍。 2、mapreduce是数据计算的过程,map将一个任务分成多个小任务,reduce的部分将结果汇总之后返回。 3、HIv…...
Excel·VBA江西省预算一体化工资表一键处理
每月制作工资表导出为Excel后都需要调整格式,删除0数据的列、对工资表项目进行排序、打印设置等等,有些单位还分有“行政”、“事业”2个工资表就需要操作2次。显然,这种重复操作的问题,可以使用VBA代码解决 目录 代码使用说明1&a…...
23种设计模式简介
一、创建型(5种) 1.工厂方法 总店定义制作流程,分店各自实现特色披萨(北京店-烤鸭披萨,上海店-蟹粉披萨) 2.抽象工厂 套餐工厂(家庭装含大披萨薯条,情侣装含双拼披萨红酒&#…...
python fire 库与 sys.argv 处理命令行参数
fire库 Python Fire 由Google开发,它使得命令行接口(CLI)的创建变得容易。使用Python Fire,可以将Python对象(如类、函数或字典)转换为可以从终端运行的命令行工具。这能够以一种简单而直观的方式与你的Py…...
PDF处理控件Aspose.PDF,如何实现企业级PDF处理
PDF处理为何成为开发者的“隐形雷区”? “手动调整200页PDF目录耗时3天,扫描件文字识别错误导致数据混乱,跨平台渲染格式崩坏引发客户投诉……” 作为开发者,你是否也在为PDF处理的复杂细节消耗大量精力?Aspose.PDF凭…...
Spring(1)——mvc概念,部分常用注解
1、什么是Spring Web MVC? Spring MVC 是一种基于 Java 的实现了 MVC(Model-View-Controller,模型 - 视图 - 控制器)设计模式的 Web 应用框架,它是 Spring 框架的一个重要组成部分,用于构建 Web 应用程序。…...
C语言(23)
字符串函数 11.strstr函数 1.1函数介绍: 头文件:string.h char *strstr ( const char * str1,const char *str2); 作用:在一个字符串(str1)中寻找另外一个字符串(str2)是否出现过 如果找到…...
Immich自托管服务的本地化部署与随时随地安全便捷在线访问数据
文章目录 前言1.关于Immich2.安装Docker3.本地部署Immich4.Immich体验5.安装cpolar内网穿透6.创建远程链接公网地址7.使用固定公网地址远程访问 前言 小伙伴们,你们好呀!今天要给大家揭秘一个超炫的技能——如何把自家电脑变成私人云相册,并…...
基于SpringBoot的在线付费问答系统设计与实现(源码+SQL脚本+LW+部署讲解等)
专注于大学生项目实战开发,讲解,毕业答疑辅导,欢迎高校老师/同行前辈交流合作✌。 技术范围:SpringBoot、Vue、SSM、HLMT、小程序、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、安卓app、大数据、物联网、机器学习等设计与开发。 主要内容:…...
【Linux】信号处理以及补充知识
目录 一、信号被处理的时机: 1、理解: 2、内核态与用户态: 1、概念: 2、重谈地址空间: 3、处理时机: 补充知识: 1、sigaction: 2、函数重入: 3、volatile&…...
pandas——to_datatime用法
Pandas中pd.to_datetime的用法及示例 pd.to_datetime 是 Pandas 库中用于将字符串、整数或列表转换为日期时间(datetime)对象的核心函数。它在处理时间序列数据时至关重要,能够灵活解析多种日期格式并统一为标准时间类型。以下是其核心用法及…...
《DataWorks 深度洞察:量子机器学习重塑深度学习架构,决胜复杂数据战场》
在数字化浪潮汹涌澎湃的当下,大数据已然成为推动各行业发展的核心动力。身处这一时代洪流,企业对数据的处理与分析能力,直接关乎其竞争力的高低。阿里巴巴的DataWorks作为大数据领域的扛鼎之作,凭借强大的数据处理与分析能力&…...
Java 大视界 -- 基于 Java 的大数据实时数据处理框架性能评测与选型建议(121)
💖亲爱的朋友们,热烈欢迎来到 青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而 我的博客 正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也…...
多线程-JUC
简介 juc,java.util.concurrent包的简称,java1.5时引入。juc中提供了一系列的工具,可以更好地支持高并发任务 juc中提供的工具 可重入锁 ReentrantLock 可重入锁:ReentrantLock,可重入是指当一个线程获取到锁之后&…...
DeepSeek:中国AGI先锋,用技术重塑通用人工智能的未来
在ChatGPT掀起全球大模型热潮的背景下,中国AI领域涌现出一批极具创新力的技术公司,深度求索(DeepSeek)便是其中的典型代表。这家以“探索未知、拓展智能边界”为使命的AI企业,凭借长文本理解、逻辑推理与多模态技术的…...
Vue 框架深度解析:源码分析与实现原理详解
文章目录 一、Vue 核心架构设计1.1 整体架构流程图1.2 模块职责划分 二、响应式系统源码解析2.1 核心类关系图2.2 核心源码分析2.2.1 数据劫持实现2.2.2 依赖收集过程 三、虚拟DOM与Diff算法实现3.1 Diff算法流程图3.2 核心Diff源码 四、模板编译全流程剖析4.1 编译流程图4.2 编…...
Opencv中的addweighted函数
一.addweighted函数作用 addweighted()是OpenCV库中用于图像处理的函数,主要功能是将两个输入图像(尺寸和类型相同)按照指定的权重进行加权叠加(图像融合),并添加一个标量值&#x…...
Java入门学习详细版(一)
大家好,Java 学习是一个系统学习的过程,核心原则就是“理论 实践 坚持”,并且需循序渐进,不可过于着急,本篇文章推出的这份详细入门学习资料将带大家从零基础开始,逐步掌握 Java 的核心概念和编程技能。 …...
基于matlab策略迭代和值迭代法的动态规划
经典的基于策略迭代和值迭代法的动态规划matlab代码,实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...
华硕a豆14 Air香氛版,美学与科技的馨香融合
在快节奏的现代生活中,我们渴望一个能激发创想、愉悦感官的工作与生活伙伴,它不仅是冰冷的科技工具,更能触动我们内心深处的细腻情感。正是在这样的期许下,华硕a豆14 Air香氛版翩然而至,它以一种前所未有的方式&#x…...
中医有效性探讨
文章目录 西医是如何发展到以生物化学为药理基础的现代医学?传统医学奠基期(远古 - 17 世纪)近代医学转型期(17 世纪 - 19 世纪末)现代医学成熟期(20世纪至今) 中医的源远流长和一脉相承远古至…...
JVM 内存结构 详解
内存结构 运行时数据区: Java虚拟机在运行Java程序过程中管理的内存区域。 程序计数器: 线程私有,程序控制流的指示器,分支、循环、跳转、异常处理、线程恢复等基础功能都依赖这个计数器完成。 每个线程都有一个程序计数…...
AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别
【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而,传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案,能够实现大范围覆盖并远程采集数据。尽管具备这些优势…...
Golang——7、包与接口详解
包与接口详解 1、Golang包详解1.1、Golang中包的定义和介绍1.2、Golang包管理工具go mod1.3、Golang中自定义包1.4、Golang中使用第三包1.5、init函数 2、接口详解2.1、接口的定义2.2、空接口2.3、类型断言2.4、结构体值接收者和指针接收者实现接口的区别2.5、一个结构体实现多…...
【Linux】Linux安装并配置RabbitMQ
目录 1. 安装 Erlang 2. 安装 RabbitMQ 2.1.添加 RabbitMQ 仓库 2.2.安装 RabbitMQ 3.配置 3.1.启动和管理服务 4. 访问管理界面 5.安装问题 6.修改密码 7.修改端口 7.1.找到文件 7.2.修改文件 1. 安装 Erlang 由于 RabbitMQ 是用 Erlang 编写的,需要先安…...
6️⃣Go 语言中的哈希、加密与序列化:通往区块链世界的钥匙
Go 语言中的哈希、加密与序列化:通往区块链世界的钥匙 一、前言:离区块链还有多远? 区块链听起来可能遥不可及,似乎是只有密码学专家和资深工程师才能涉足的领域。但事实上,构建一个区块链的核心并不复杂,尤其当你已经掌握了一门系统编程语言,比如 Go。 要真正理解区…...

