当前位置: 首页 > news >正文

Spark SQL join操作详解

一、 数据准备

本文主要介绍 Spark SQL 的多表连接,需要预先准备测试数据。分别创建员工和部门的 Datafame,并注册为临时视图,代码如下:

val spark = SparkSession.builder().appName("aggregations").master("local[2]").getOrCreate()val empDF = spark.read.json("/usr/file/json/emp.json")
empDF.createOrReplaceTempView("emp")val deptDF = spark.read.json("/usr/file/json/dept.json")
deptDF.createOrReplaceTempView("dept")

两表的主要字段如下:

emp 员工表|-- ENAME: 员工姓名|-- DEPTNO: 部门编号|-- EMPNO: 员工编号|-- HIREDATE: 入职时间|-- JOB: 职务|-- MGR: 上级编号|-- SAL: 薪资|-- COMM: 奖金  
dept 部门表|-- DEPTNO: 部门编号|-- DNAME:  部门名称|-- LOC:    部门所在城市

注:emp.json,dept.json 可以在本仓库的resources 目录进行下载。

二、连接类型

Spark 中支持多种连接类型:

  • Inner Join : 内连接;
  • Full Outer Join : 全外连接;
  • Left Outer Join : 左外连接;
  • Right Outer Join : 右外连接;
  • Left Semi Join : 左半连接;
  • Left Anti Join : 左反连接;
  • Natural Join : 自然连接;
  • Cross (or Cartesian) Join : 交叉 (或笛卡尔) 连接。

其中内,外连接,笛卡尔积均与普通关系型数据库中的相同,如下图所示:

 

这里解释一下左半连接和左反连接,这两个连接等价于关系型数据库中的in和not in字句:

-- LEFT SEMI JOIN
SELECT * FROM emp LEFT SEMI JOIN dept ON emp.deptno = dept.deptno
-- 等价于如下的 IN 语句
SELECT * FROM emp WHERE deptno IN (SELECT deptno FROM dept)-- LEFT ANTI JOIN
SELECT * FROM emp LEFT ANTI JOIN dept ON emp.deptno = dept.deptno
-- 等价于如下的 IN 语句
SELECT * FROM emp WHERE deptno NOT IN (SELECT deptno FROM dept)

所有连接类型的示例代码如下:

2.1 inner join

两表内接

// 1.定义连接表达式
val joinExpression = empDF.col("deptno") === deptDF.col("deptno")
// 2.连接查询 
empDF.join(deptDF,joinExpression).select("ename","dname").show()// 等价 SQL 如下:
spark.sql("SELECT ename,dname FROM emp JOIN dept ON emp.deptno = dept.deptno").show()

2.2 full outer join

FULL OUTER JOIN 关键字返回左表(Websites)和右表(access_log)中所有的行。

empDF.join(deptDF, joinExpression, "outer").show()
spark.sql("SELECT * FROM emp FULL OUTER JOIN dept ON emp.deptno = dept.deptno").show()

2.3 left outer join

把左边表的数据全部取出来,而右边表的数据有相等的,显示出来,如果没有,显示NULL

empDF.join(deptDF, joinExpression, "left_outer").show()
spark.sql("SELECT * FROM emp LEFT OUTER JOIN dept ON emp.deptno = dept.deptno").show()

2.4 right outer join

把右边表的数据全部取出来,而左边表的数据有相等的,显示出来,如果没有,显示NULL

empDF.join(deptDF, joinExpression, "right_outer").show()
spark.sql("SELECT * FROM emp RIGHT OUTER JOIN dept ON emp.deptno = dept.deptno").show()

2.5 left_semi join

Semi Join,也叫半连接,是从分布式数据库中借鉴过来的方法。它的产生动机是:对于reduce side join,跨机器的数据传输量非常大,这成了join操作的一个瓶颈,如果能够在map端过滤掉不会参加join操作的数据,则可以大大节省网络IO,提升执行效率。

left_semi join子句中右边的表只能在 ON 子句中设置过滤条件,在 WHERE 子句、SELECT 子句或其他地方过滤都不行。

left_semi join和join对待右表中重复key的处理方式差异:因为 left semi join 是 in(keySet) 的关系,遇到右表重复记录,左表会跳过,而 join on 则会一直遍历。

最后的结果是这会造成性能,以及 join 结果上的差异。

left semi join 中最后 select 的结果只许出现左表,因为右表只有 join key 参与关联计算了,而 join on 默认是整个关系模型都参与计算了。

empDF.join(deptDF, joinExpression, "left_semi").show()
spark.sql("SELECT * FROM emp LEFT SEMI JOIN dept ON emp.deptno = dept.deptno").show()

2.6 left anti join

 left anti join的功能是在查询过程中,剔除左表中和右表有交集的部分

empDF.join(deptDF, joinExpression, "left_anti").show()
spark.sql("SELECT * FROM emp LEFT ANTI JOIN dept ON emp.deptno = dept.deptno").show()

2.7 cross join

CROSS JOIN 称为“交叉连接”或者“笛卡尔连接”。SQL CROSS JOIN 连接用于从两个或者多个连接表中返回记录集的笛卡尔积,即将左表的每一行与右表的每一行合并。

empDF.join(deptDF, joinExpression, "cross").show()
spark.sql("SELECT * FROM emp CROSS JOIN dept ON emp.deptno = dept.deptno").show()

2.8 natural join

自然连接是在两张表中寻找那些数据类型和列名都相同的字段,然后自动地将他们连接起来,并返回所有符合条件的结果。

spark.sql("SELECT * FROM emp NATURAL JOIN dept").show()

以下是一个自然连接的查询结果,程序自动推断出使用两张表都存在的 dept 列进行连接,其实际等价于:

spark.sql("SELECT * FROM emp JOIN dept ON emp.deptno = dept.deptno").show()

 

三、连接的执行

在对大表与大表之间进行连接操作时,通常都会触发shuffle join,两表的所有分区节点会进行ALL-to-ALL的通讯,这种查询通常比较昂贵,会对网络 IO 会造成比较大的负担。

 而对于大表和小表的连接操作,Spark 会在一定程度上进行优化,如果小表的数据量小于 Worker Node 的内存空间,Spark 会考虑将小表的数据广播到每一个 Worker Node,在每个工作节点内部执行连接计算,这可以降低网络的 IO,但会加大每个 Worker Node 的 CPU 负担。

是否采用广播方式进行 Join 取决于程序内部对小表的判断,如果想明确使用广播方式进行 Join,则可以在 DataFrame API 中使用 broadcast 方法指定需要广播的小表:

empDF.join(broadcast(deptDF), joinExpression).show()

 

相关文章:

Spark SQL join操作详解

一、 数据准备 本文主要介绍 Spark SQL 的多表连接,需要预先准备测试数据。分别创建员工和部门的 Datafame,并注册为临时视图,代码如下: val spark SparkSession.builder().appName("aggregations").master("lo…...

设计模式-day04

5,结构型模式 5.6 组合模式 5.6.1 概述 对于这个图片肯定会非常熟悉,上图我们可以看做是一个文件系统,对于这样的结构我们称之为树形结构。在树形结构中可以通过调用某个方法来遍历整个树,当我们找到某个叶子节点后,…...

线段树的学习(2023.4.5)

今天我来学习线段树 首先它是树有着树的结构,线段树由于本身是专门用来处理区间问题的 它的作用可以处理区间的问题拥有更快的速度. 对于每一个子节点而言,都表示整个序列中的一段子区间;对于每个叶子节点而言,都表示序列中的单个元素信息…...

Java 实现excel、word、txt、ppt等办公文件在线预览功能

相信大家在开发的过程中都会遇到在线预览功能,有没有想过如何通过java来实现excel、word、txt、ppt等办公文件在线预览功能?今天我们就来解决这一疑问! 其实,网上还是有些公司对这一功能提供了收费服务。那么,如何实现…...

《Vue3实战》 第九章 路由

1、安装路由 cnpm install vue-router42、router-link应用 2.1、创建views/OrderList.vue组件 <template> <h1>订单列表页面......</h1> </template> <script> export default{name: OrderList,data(){return{arr:[4,2,5]} } …...

ToBeWritten之物联网Zigbee协议

也许每个人出生的时候都以为这世界都是为他一个人而存在的&#xff0c;当他发现自己错的时候&#xff0c;他便开始长大 少走了弯路&#xff0c;也就错过了风景&#xff0c;无论如何&#xff0c;感谢经历 转移发布平台通知&#xff1a;将不再在CSDN博客发布新文章&#xff0c;敬…...

【万象奥科】RZ/G2UL网关内存压力测试

测试目的 内存压力测试的目的是测试系统内存的稳定性和可靠性&#xff0c;以便确定系统是否能够在各种负载情况下正常运行。其主要目的有&#xff1a; 测试内存的正确性&#xff1a;通过模拟各种内存负载情况&#xff0c;例如写入随机数据、重复写入相同数据、使用指定的模式…...

C++中的继承

面向对象的三大特性 封装继承多态 继承的概念和定义 继承的本质就是类层次的复用。 继承的概念继承(inheritance)机制是面向对象程序设计使代码可以复用的最重要的手段.它允许程序员在保持原有类特性的基础上进行扩展&#xff0c;增加功能&#xff0c;这样产生新的类&#xf…...

SpringRetry接口异常优雅重试机制

场景&#xff1a; 某些场景下&#xff0c;如果接口出现异常需要进行重试&#xff0c;例如网络抖动、调用接口超时等并非接口代码导致的报错&#xff0c;此时可以进行接口重试机制 1、导入 spring retry 重试依赖 <!-- spring retry --><dependency><groupId>…...

2023年全国最新高校辅导员精选真题及答案46

百分百题库提供高校辅导员考试试题、辅导员考试预测题、高校辅导员考试真题、辅导员证考试题库等&#xff0c;提供在线做题刷题&#xff0c;在线模拟考试&#xff0c;助你考试轻松过关。 27.充沛的精力和顽强的毅力是教师意志品质的体现。 答案&#xff1a;正确 28.规范与约束…...

程序员为了女朋you进了华为,同学去了阿里,2年后对比收入懵了

什么样的工作才是好工作&#xff1f;每当遇到这个问题&#xff0c;我们的答案总是出奇的一致&#xff1a;钱多事少离家近。 然而现实总是残酷的&#xff0c;日前&#xff0c;有网友在某社交论坛发帖称&#xff1a;自己为了女朋友留在了成都进入华为工作&#xff0c;而自己的同…...

Linux中的算法分离手段

0. 简介 参数分离对于绝大多数算法开发来说收益是非常大的&#xff0c;因为我们都知道&#xff0c;随着平台的更替&#xff0c;很多时候如果说数据流和算法交叠在一起&#xff08;即接口与实现合在一起&#xff09;。这将有可能会导致在迁移平台时候会导致代码难以维护&#x…...

机器学习实战:Python基于Logistic逻辑回归进行分类预测

目录1 前言1.1 Logistic回归的介绍1.2 Logistic回归的应用2 iris数据集数据处理2.1 导入函数2.2 导入数据2.3 简单数据查看3 可视化3.1 条形图/散点图3.2 箱线图3.3 三维散点图4 建模预测4.1 二分类预测4.2 多分类预测5 讨论1 前言 1.1 Logistic回归的介绍 逻辑回归&#xff…...

Leetcode.404 左叶子之和

题目链接 Leetcode.404 左叶子之和 easy 题目描述 给定二叉树的根节点 root&#xff0c;返回所有 左叶子 之和。 示例 1&#xff1a; 输入: root [3,9,20,null,null,15,7] 输出: 24 解释: 在这个二叉树中&#xff0c;有两个左叶子&#xff0c;分别是 9 和 15&#xff0c;所以…...

Android 11.0 原生SystemUI下拉通知栏UI背景设置为圆角背景的定制(二)

1.前言 在11.0的系统rom定制化开发中,在原生系统SystemUI下拉状态栏的下拉通知栏的背景默认是白色四角的背景, 由于在产品设计中,在对下拉通知栏通知的背景需要把四角背景默认改成圆角背景,所以就需要分析系统原生下拉通知栏的每条通知的默认背景, 然后通过systemui的通知…...

C语言CRC-16 IBM格式校验函数

C语言CRC-16 IBM格式校验函数 CRC-16校验产生2个字节长度的数据校验码&#xff0c;通过计算得到的校验码和获得的校验码比较&#xff0c;用于验证获得的数据的正确性。基本的CRC-16校验算法实现&#xff0c;参考&#xff1a; C语言标准CRC-16校验函数。 不同厂家通过对输入数…...

Maven高级-聚合和继承

Maven高级-聚合和继承3&#xff0c;聚合和继承3.1 聚合步骤1:创建一个空的maven项目步骤2:将项目的打包方式改为pom步骤3:pom.xml添加所要管理的项目步骤4:使用聚合统一管理项目3.2 继承步骤1:创建一个空的Maven项目并将其打包方式设置为pom步骤2:在子项目中设置其父工程步骤3:…...

如何写出10万+ Facebook 贴文?

想要创作一篇优秀的Facebook贴文&#xff0c;首先要考虑以下几个问题&#xff1a; 1.文案特点 一篇清晰简洁的文案有助于受众在有限的浏览时间内快速了解你想要展示的信息。根据以往经验&#xff0c;文案内容最好保持在20个汉字以内&#xff0c;加上链接描述最好也不要超过50…...

图像处理数据集

BSDS500 Berkeley Segmentation Dataset 500 是第一个用于评估超像素算法的数据集。对于参数优化&#xff0c;使用了验证集。 500张数据集200训练集train100验证集val200测试集test 每张图像有 5 个不同的高质量地面真值分割&#xff08;groundTruth,是.mat文件&#xff09; …...

文本聚类与摘要,让AI帮你做个总结

你好&#xff0c;我是徐文浩。 上一讲里&#xff0c;我们用上了最新的ChatGPT的API&#xff0c;注册好了HuggingFace的账号&#xff0c;也把我们的聊天机器人部署了出去。希望通过这个过程&#xff0c;你对实际的应用开发过程已经有了充足的体验。那么这一讲里&#xff0c;我们…...

基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销&#xff0c;平衡网络负载&#xff0c;延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...

MySQL用户和授权

开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务&#xff1a; test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...

【Oracle】分区表

个人主页&#xff1a;Guiat 归属专栏&#xff1a;Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...

代理篇12|深入理解 Vite中的Proxy接口代理配置

在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...

NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合

在汽车智能化的汹涌浪潮中&#xff0c;车辆不再仅仅是传统的交通工具&#xff0c;而是逐步演变为高度智能的移动终端。这一转变的核心支撑&#xff0c;来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒&#xff08;T-Box&#xff09;方案&#xff1a;NXP S32K146 与…...

Android写一个捕获全局异常的工具类

项目开发和实际运行过程中难免会遇到异常发生&#xff0c;系统提供了一个可以捕获全局异常的工具Uncaughtexceptionhandler&#xff0c;它是Thread的子类&#xff08;就是package java.lang;里线程的Thread&#xff09;。本文将利用它将设备信息、报错信息以及错误的发生时间都…...

二维FDTD算法仿真

二维FDTD算法仿真&#xff0c;并带完全匹配层&#xff0c;输入波形为高斯波、平面波 FDTD_二维/FDTD.zip , 6075 FDTD_二维/FDTD_31.m , 1029 FDTD_二维/FDTD_32.m , 2806 FDTD_二维/FDTD_33.m , 3782 FDTD_二维/FDTD_34.m , 4182 FDTD_二维/FDTD_35.m , 4793...

用 Rust 重写 Linux 内核模块实战:迈向安全内核的新篇章

用 Rust 重写 Linux 内核模块实战&#xff1a;迈向安全内核的新篇章 ​​摘要&#xff1a;​​ 操作系统内核的安全性、稳定性至关重要。传统 Linux 内核模块开发长期依赖于 C 语言&#xff0c;受限于 C 语言本身的内存安全和并发安全问题&#xff0c;开发复杂模块极易引入难以…...

Python爬虫实战:研究Restkit库相关技术

1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的有价值数据。如何高效地采集这些数据并将其应用于实际业务中,成为了许多企业和开发者关注的焦点。网络爬虫技术作为一种自动化的数据采集工具,可以帮助我们从网页中提取所需的信息。而 RESTful API …...

【深尚想】TPS54618CQRTERQ1汽车级同步降压转换器电源芯片全面解析

1. 元器件定义与技术特点 TPS54618CQRTERQ1 是德州仪器&#xff08;TI&#xff09;推出的一款 汽车级同步降压转换器&#xff08;DC-DC开关稳压器&#xff09;&#xff0c;属于高性能电源管理芯片。核心特性包括&#xff1a; 输入电压范围&#xff1a;2.95V–6V&#xff0c;输…...