当前位置: 首页 > news >正文

关于运行时内存数据区的一些扩展概念

栈顶缓存技术(Top-of-Stack Cashing)

前面提过,基于栈式架构的虚拟机所使用的零地址指令更加紧凑,但完成一项操作的时候必然需要使用更多的入栈和出栈指令,这同时也就意味着将需要更多的指令分派(instruction dispatch)次数和内存读/写次数由于操作数是存储在内存中的,因此频繁地执行内存读/写操作必然会影响执行速度。为了解决这个问题,Hotspot JVM的设计者们提出了栈顶缓存(ToS,Top-of-Stack Cashing)技术,将栈顶元素全部缓存在物理CPU的寄存器中,以此降低对内存的读/写次数,提升执行引擎的执行效率

方法的调用

静态链接与动态链接

在JVM中,将符号引用转换为调用方法的直接引用与方法的绑定机制相关。

静态链接:

当一个字节码文件被装载进JVM内部时,如果被调用的目标方法在编译期可知且运行期保持不变时。这种情况下将调用方法的符号引用转换为直接引用的过程称之为静态链接。

动态链接:

如果被调用的方法在编译期无法被确定下来,也就是说,只能够在程序运行期将调用方法的符号引用转换为直接引用,由于这种引用转换过程具备动态性,因此也就被称之为动态链接。

早起绑定与晚期绑定

对应的方法的绑定机制为:早期绑定(Early Binding)和晚期绑定(Late Binding)。绑定是一个字段、方法或者类在符号引用被替换为直接引用的过程,这仅仅发生一次。

早期绑定:

早期绑定就是指被调用的目标方法如果在编译期可知,且运行期保持不变时,即可将这个方法与所属的类型进行绑定,这样一来,由于明确了被调用的目标方法究竞是哪一个,因此也就可以使用静态链接的方式将符号引用转换为直接引用。

晚期绑定:

如果被调用的方法在编译期无法被确定下来,只能够在程序运行期根据实际的类型绑定相关的方法,这种绑定方式也就被称之为晚期绑定。

虚方法与非虚方法

随着高级语言的横空出世,类似于Java一样的基于面向对象的编程语言如今越来越多,尽管这类编程语言在语法风格上存在一定的差别,但是它们彼此之间始终保持着一个共性,那就是都支持封装、继承和多态等面向对象特性,既然这一类的编程语言具备多态特性,那么自然也就具备早期绑定和晚期绑定两种绑定方式。

Java中任何一个普通的方法其实都具备虚函数的特征,它们相当于c++语言中的虚函数(c++中则需要使用关键字virtual来显式定义)。如果在Java程序中不希望某个方法拥有虚函数的特征时,则可以使用关键字final来标记这个方法。

非虚方法:

如果方法在编译期就确定了具体的调用版本,这个版本在运行时是不可变的。这样的方法称为非虚方法。

静态方法、私有方法、final方法、实例构造器、父类方法都是非虚方法。

其他方法称为虚方法。

虚拟机中提供了以下几条方法调用指令:

普通调用指令:

  1. invokestatic:调用静态方法,解析阶段确定唯一方法版本
  2. invokespecial:调用<init>方法、私有及父类方法,解析阶段确定唯一方法版本
  3. invokevirtual:调用所有虚方法
  4. invokeinterface:调用接口方法

动态调用指令:

  1. invokedynamic:动态解析出需要调用的方法,然后执行

前四条指令固化在虚拟机内部,方法的调用执行不可人为千预,而invokedynamic指令则支持由用户确定方法版本。其中invokestatic指令和invokespecial指令调用的方法称为非虚方法,其余的(final修饰的除外)称为虚方法。

JVM字节码指令集一直比较稳定,一直到Java7中才增加了一个invokedynamic指令,这是Java为了实现「动态类型语言」支持而做的一种改进。

但是在Java7中并没有提供直接生成invokedynamic指令的方法,需要借助ASM这种底层字节码工具来产生invokedynamic指令。直到Java8的Lambda表达式的出现,invokedynamic指令的生成,在Java中才有了直接的生成方式。

Java7中增加的动态语言类型支持的本质是对Java虚拟机规范的修改,而不是对Java语言规则的修改,这一块相对来讲比较复杂,增加了虚拟机中的方法调用,最直接的受益者就是运行在Java平台的动态语言的编译器。

动态类型语言和静态类型语言

动态类型语言和静态类型语言两者的区别就在于对类型的检查是在编译期还是在运行期,满足前者就是静态类型语言,反之是动态类型语言。

说的再直白一点就是,静态类型语言是判断变量自身的类型信息:动态类型语言是判断变量值的类型信息,变量没有类型信息,变量值才有类型信息,这是动态语言的一个重要特征。

方法重写的本质

Java语言中方法重写的本质:

  1. 找到操作数栈顶的第一个元素所执行的对象的实际类型,记作C。
  2. 如果在类型C中找到与常量中的描述符合简单名称都相符的方法,则进行访问权限校验,如果通过则返回这个方法的直接引用,查找过程结束;如果不通过,则返回java.lang.IllegalAccessError异常。
  3. 否则,按照继承关系从下住上依次对C的各个父类进行第2步的搜索和验证过程。
  4. 如果始终没有找到合适的方法,则抛出java.lang.AbstractMethodError异常。

IllegalAccessError介绍:

程序试图访问或修改一个属性或调用一个方法,这个属性或方法,你没有权限访问。一般

的,这个会引起编译器异常。这个错误如果发生在运行时,就说明一个类发生了不兼容的

改变。

虚方法表

在面向对象的编程中,会很频繁的使用到动态分派,如果在每次动态分派的过程中都要重新在类的方法元数据中搜索合适的目标的话就可能影响到执行效率。因此,为了提高性能,JVM采用在类的方法区建立一个虚方法表(virtual method table)(非虚方法不会出现在表中)来实现。使用索引表来代替查找。

每个类中都有一个虚方法表,表中存放着各个方法的实际入口。

那么虚方法表什么时候被创建?

虚方法表会在类加载的链接阶段被创建并开始初始化,类的变量初始值准备完成之后,JVM会把该类的方法表也初始化完毕。

相关文章:

关于运行时内存数据区的一些扩展概念

栈顶缓存技术&#xff08;Top-of-Stack Cashing&#xff09; 前面提过&#xff0c;基于栈式架构的虚拟机所使用的零地址指令更加紧凑&#xff0c;但完成一项操作的时候必然需要使用更多的入栈和出栈指令&#xff0c;这同时也就意味着将需要更多的指令分派(instruction dispatc…...

计算机组成原理第二章数据的表示与运算(中)

提示&#xff1a;且行且忘且随风&#xff0c;且行且看且从容 文章目录前言2.2.0 奇偶校验码(大纲已删)2.2.1 电路的基本原理 加法器设计2.2.2 并行进位加法器2.2.3 补码加减运算器2.2.4 标志位的生成2.2.5 定点数的移位运算2.2.62.2.6.1 原码的乘法运算2.2.6.2 补码的乘法运算2…...

我的第一台电脑的故事

第一台电脑啊&#xff0c;多么遥远的故事了&#xff0c;又似乎就在眼前。今天重回往事&#xff0c;就简单记录一下吧。 &#x1f331;缘起 那是初一&#xff0c;至今已13年&#xff0c;遂觉遥远&#xff0c;而又是立志我学习的起点&#xff0c;至今还在校园&#xff0c;又觉就…...

【1041. 困于环中的机器人】

来源&#xff1a;力扣&#xff08;LeetCode&#xff09; 描述&#xff1a; 在无限的平面上&#xff0c;机器人最初位于 (0, 0) 处&#xff0c;面朝北方。注意: 北方向 是 y 轴的正方向。南方向 是 y 轴的负方向。东方向 是 x 轴的正方向。西方向 是 x 轴的负方向。 机器人可…...

几何算法——4.交线(intersection curve)的表达与参数化、微分性质

几何算法——4.曲面求交的交线&#xff08;intersection curve&#xff09;的表达与参数化、微分性质1 关于曲面求交的交线表达2 交线的微分性质3 交线的参数化4 修正弦长参数化的微分性质1 关于曲面求交的交线表达 两个曲面求交&#xff0c;比较经典的方法是用跟踪法&#xf…...

【GPT】让你事半功倍特别好用的5个GPT工具

文章目录前言一、现在还能开通ChatGPT4.0吗&#xff1f;二、推荐五款与ChatGPT的相关实用工具1.一款浏览器插件&#xff1a;ChatGPT for Google2.一款生成图片的AI工具&#xff1a;midjourney3.推荐两款AI自动生成PPT&#xff1a;闪击PPT、mindshow4.识别PFD文件内容对话&#…...

人工智能大模型多场景应用原理解析

前言 在上篇文章《人工智能大模型之ChatGPT原理解析》中分享了一些大模型之ChatGPT的核心原理后&#xff0c;收到大量读者的反馈&#xff0c;诸如:在了解了核心原理后想进一步了解未来的发展趋势(比如生成式人工智能和元宇宙能擦出什么样的火花&#xff1f;)&#xff0c;大模型…...

SpringBoot默认包扫描机制与默认配置文件

文章目录一、SpringBoot默认包扫描机制 - 示例二、SpringBoot默认扫描包机制 - 原理三、SpringBoot手动扫描包机制 - 原理&示例四、ComponentScan与MapperScan五、SpringBoot默认配置文件一、SpringBoot默认包扫描机制 - 示例 默认情况下&#xff0c;扫描启动类同级及其子…...

RabbitMq 消息可靠性问题(一) --- publisher发送时丢失

前言 消息从生产者发送到exchange, 再到 queue, 再到消费者。这个过程中有哪些有消息丢失的可能性呢&#xff1f; 发送时丢失&#xff1a; 生产者发送的消息未送达 exchange消息到达 exchange 后未到达 queue MQ 宕机&#xff0c;queue将消息丢失consumer 接收到消息后未消费…...

Java初识泛型

目录 一、包装类 1、基本数据类型和对应的包装类 2、装箱和拆箱 3、自动装箱和自动拆箱 二、什么是泛型 三、引出泛型 1、泛型的语法 四、泛型类的使用 1、语法 2、示例 3、类型推导(Type Inference) 六、泛型如何编译的 1、擦除机制 2、为什么不能实例化泛型类…...

寸照换底色技巧大全,超详细图文教程

在日常的设计工作中&#xff0c;我们常常需要将图片的背景色进行修改&#xff0c;以适应不同的场景和需求。其中最常用的方法就是寸照换底色技巧。本文将为大家介绍一些常见的寸照换底色技巧&#xff0c;并提供超详细的图文教程&#xff0c;帮助大家轻松完成这项任务。 一、使…...

这篇文章价值很大:股票历史分时成交数据怎么简单获取?【干货】

文章目录前言一、准备二、使用步骤1.引入库2&#xff0c;使用这个API查询历史分时数据&#xff1a;3.查询完整历史分时数据4.其他查询方法参数格式&#xff1a;[(市场代码, 股票代码), ...]参数&#xff1a;市场代码, 股票代码, 文件名, 起始位置, 数量参数&#xff1a;市场代码…...

muduo源码剖析--Buffer

Buffer类 Buffer类是自定义处理数据输入缓冲的类&#xff0c;底层是vector< char >&#xff0c;通过readIdx和writeIdx将缓冲区分为3个部分&#xff0c;第一部分是预留的8字节已经读出的缓冲区字节数、第二部分是还未读出的部分、第三部分是可写的部分。 Buffer类的设计…...

AI人工智能简介和其定义

全称&#xff1a;人工智能&#xff08;Artificial Intelligence&#xff09; 缩写&#xff1a;AI / ai 人工智能研究 亦称智械、机器智能&#xff0c;指由人制造出来的可以表现出智能的机器。通常人工智能是指通过普通计算机程序来呈现人类智能的技术。该词也指出研究这样的智…...

python数据清洗

数据清洗包括&#xff1a;空值&#xff0c;异常值&#xff0c;重复值&#xff0c;类型转换和数据整合这里数据清洗需要用到的库是pandas库&#xff0c;下载方式还是在终端运行 &#xff1a; pip install pandas.首先我们需要对数据进行读取import pandas as pddata pd.read_cs…...

Python3 os.makedirs() 方法、Python3 os.read() 方法

Python3 os.makedirs() 方法 概述 os.makedirs() 方法用于递归创建目录。像 mkdir(), 但创建的所有intermediate-level文件夹需要包含子目录。 语法 makedirs()方法语法格式如下&#xff1a; os.makedirs(path, mode0o777)参数 path -- 需要递归创建的目录。 mode -- 权限…...

【Linux安装数据库】Ubuntu安装mysql并连接navicat

Linux系统部署Django项目 文章目录Linux系统部署Django项目一、mysql安装二、mysql配置文件三、新建数据库和用户四、nivacat链接mysql一、mysql安装 linux安装mysql数据库有很多教程&#xff0c;根据安装方式不同&#xff0c;相关的步骤也不同。可以参考&#xff1a;【Linux安…...

GaussDB工作级开发者认证—第一章GaussDB数据库介绍

一. GaussDB概述 GaussDB是华为基于openGauss自研生态推出的企业级分布式关系型数据库。具备企业级复杂事物混合负载能力&#xff0c;同时支持分布式事务强一致性&#xff0c;同城跨AZ部署&#xff0c;数据0丢失&#xff0c;支持1000的计算节点扩展能力&#xff0c;4PB海量存储…...

阿里张勇:所有行业都值得用大模型重新做一遍!

‍数据智能产业创新服务媒体——聚焦数智 改变商业“2023阿里云峰会”于4月11日在北京国际会议中心隆重召开&#xff0c;本次峰会以" 与实俱进 为创新提速&#xff01;"为主题&#xff0c;阿里巴巴集团董事会主席兼首席执行官张勇、阿里云智能集团首席技术官周靖人、…...

ES6(字符串的扩展与新增方法)

字符串的扩展与新增方法 1. 模板字符串 模板字符串解决了之前的字符串拼接 ESC下那个键&#xff1a;反引号&#xff08;&#xff09;包裹>替换引号 ${变量名/表达式/函数}>替换引引加加导致的代码冗余 //ES5(引引加加) $(#result).append(There are <b> basket.c…...

椭圆曲线密码学(ECC)

一、ECC算法概述 椭圆曲线密码学&#xff08;Elliptic Curve Cryptography&#xff09;是基于椭圆曲线数学理论的公钥密码系统&#xff0c;由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA&#xff0c;ECC在相同安全强度下密钥更短&#xff08;256位ECC ≈ 3072位RSA…...

【Java学习笔记】Arrays类

Arrays 类 1. 导入包&#xff1a;import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序&#xff08;自然排序和定制排序&#xff09;Arrays.binarySearch()通过二分搜索法进行查找&#xff08;前提&#xff1a;数组是…...

【2025年】解决Burpsuite抓不到https包的问题

环境&#xff1a;windows11 burpsuite:2025.5 在抓取https网站时&#xff0c;burpsuite抓取不到https数据包&#xff0c;只显示&#xff1a; 解决该问题只需如下三个步骤&#xff1a; 1、浏览器中访问 http://burp 2、下载 CA certificate 证书 3、在设置--隐私与安全--…...

浅谈不同二分算法的查找情况

二分算法原理比较简单&#xff0c;但是实际的算法模板却有很多&#xff0c;这一切都源于二分查找问题中的复杂情况和二分算法的边界处理&#xff0c;以下是博主对一些二分算法查找的情况分析。 需要说明的是&#xff0c;以下二分算法都是基于有序序列为升序有序的情况&#xf…...

selenium学习实战【Python爬虫】

selenium学习实战【Python爬虫】 文章目录 selenium学习实战【Python爬虫】一、声明二、学习目标三、安装依赖3.1 安装selenium库3.2 安装浏览器驱动3.2.1 查看Edge版本3.2.2 驱动安装 四、代码讲解4.1 配置浏览器4.2 加载更多4.3 寻找内容4.4 完整代码 五、报告文件爬取5.1 提…...

是否存在路径(FIFOBB算法)

题目描述 一个具有 n 个顶点e条边的无向图&#xff0c;该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序&#xff0c;确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数&#xff0c;分别表示n 和 e 的值&#xff08;1…...

Pinocchio 库详解及其在足式机器人上的应用

Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库&#xff0c;专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性&#xff0c;并提供了一个通用的框架&…...

【分享】推荐一些办公小工具

1、PDF 在线转换 https://smallpdf.com/cn/pdf-tools 推荐理由&#xff1a;大部分的转换软件需要收费&#xff0c;要么功能不齐全&#xff0c;而开会员又用不了几次浪费钱&#xff0c;借用别人的又不安全。 这个网站它不需要登录或下载安装。而且提供的免费功能就能满足日常…...

人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式

今天是关于AI如何在教学中增强学生的学习体验&#xff0c;我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育&#xff0c;这并非炒作&#xff0c;而是已经发生的巨大变革。教育机构和教育者不能忽视它&#xff0c;试图简单地禁止学生使…...

【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看

文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...