投票感知器参数学习算法
投票感知器参数学习算法
以下为投票感知器参数学习算法的伪代码:
输入:训练集 (x1,y1),(x2,y2),...,(xn,yn)(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)(x1,y1),(x2,y2),...,(xn,yn),学习率 η\etaη,最大迭代次数 TTT
 输出:权重向量 www,偏置 bbb
初始化权重向量 www 和偏置 bbb 为0。
 for i = 1 to T do
  for j = 1 to n do
   if yj(w⋅xj+b)≤0y_j(w\cdot x_j + b) \leq 0yj(w⋅xj+b)≤0 then
    w←w+ηyjxjw \leftarrow w + \eta y_j x_jw←w+ηyjxj
    b←b+ηyjb \leftarrow b + \eta y_jb←b+ηyj
   end if
  end for
 end for
 返回权重向量 www 和偏置 bbb
在上述算法中,w⋅xjw\cdot x_jw⋅xj 表示权重向量 www 和样本 xjx_jxj 的点积,yjy_jyj 是第 jjj 个样本的真实标签,η\etaη 是学习率,TTT 是最大迭代次数。在算法的每次迭代中,对于每个样本 xjx_jxj,如果 yj(w⋅xj+b)≤0y_j(w\cdot x_j + b) \leq 0yj(w⋅xj+b)≤0,则更新权重向量 www 和偏置 bbb,使得模型能够更好地预测样本的标签。在训练结束后,算法返回学习到的权重向量 www 和偏置 bbb,可以用于对新样本进行预测。
相关文章:
投票感知器参数学习算法
投票感知器参数学习算法 以下为投票感知器参数学习算法的伪代码: 输入:训练集 (x1,y1),(x2,y2),...,(xn,yn)(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)(x1,y1),(x2,y2),...,(xn,yn),学习率 η\etaη,最大迭代次数 TTT…...
Hyper-v下安装CentOS-Stream-9
1、我不想要动态扩展的硬盘,固定大小硬盘性能更高,所以这里我先创建一个固定硬盘(如果你想用动态扩展的硬盘,那么可以省略前面几步,直接从第7步开始,并在第12步选择创建可动态扩展的虚拟硬盘)&a…...
数据结构之顺序表,实现顺序表的增删改查
目录 一、顺序表的概念 二、顺序表的分类 1.静态顺序表 2.动态顺序表 3.顺序表的增删改查 总结 一、顺序表的概念 顺序表是一段物理地址连续的村塾单元依次存储数据元素的线性结构,一般情况下使用数组存储,在数组上完成数据的增删改查。 二、顺…...
HTB-Jeeves
HTB-Jeeves信息收集80端口50000端口开机kohsuke -> Administrator信息收集 80端口 ask jeeves是一款以回答用户问题提问的自然语言引擎,面对问题首先查看数据库里是否…...
大力出奇迹——GPT系列论文学习(GPT,GPT2,GPT3,InstructGPT)
目录说在前面1.GPT1.1 引言1.2 训练范式1.2.1 无监督预训练1.2.2 有监督微调1.3 实验2. GPT22.1 引言2.2 模型结构2.3 训练范式2.4 实验3.GPT33.1引言3.2 模型结构3.3 训练范式3.4 实验3.4.1数据集3.5 局限性4. InstructGPT4.1 引言4.2 方法4.2.1 数据收集4.2.2 各部分模型4.3 …...
Linux ubuntu更新meson版本
问题描述 在对项目源码用meson进行编译时,可能出现以下错误 meson.build:1:0: ERROR: Meson version is 0.45.1 but project requires > 0.58.0. 或者 meson_options.txt:1:0: ERROR: Unknown type feature. 等等,原因是meson版本跟设置的不适配。 …...
匹配yyyy-MM-dd日期格式的正则表达式
^\d{4}-(0[1-9]|1[0-2])-(0[1-9]|[12]\d|3[01])$ 解释: ^:匹配行的开头 \d{4}:匹配四个数字,表示年份 -:匹配一个横杠 (0[1-9]|1[0-2]):匹配01到12的月份,0开头的要匹配两位数字,1开…...
【失业预告】生成式人工智能 (GAI)AIGC
文章目录AIGCGAIAGI应用1. 计算机领域2. 金融领域3. 电商领域4. C端娱乐5. 游戏领域6. 教育领域7. 工业领域8. 医疗领域9. 法律领域10. 农业/食品领域11. 艺术/设计领域来源AIGC AIGC,全称为Artificial Intelligence Generated Content,是一种新型的人工…...
TensorFlow 2.0 的新增功能:第一、二部分
原文:What’s New in TensorFlow 2.0 协议:CC BY-NC-SA 4.0 译者:飞龙 本文来自【ApacheCN 深度学习 译文集】,采用译后编辑(MTPE)流程来尽可能提升效率。 不要担心自己的形象,只关心如何实现目…...
Spring Boot配置文件详解
前言 Spring Boot 官方提供了两种常用的配置文件格式,分别是properties、YML格式。相比于properties来说,YML更加年轻,层级也是更加分明。 1. properties格式简介 常见的一种配置文件格式,Spring中也是用这种格式,语…...
实习面试题整理1
1、进行一下自我介绍 2、介绍一下你简历里的两个项目 3、说说vue的生命周期(具体作用) 4、说说你对vue单页面和多页面应用的理解 5、说说vue里自带的数组方法(七种,往响应式数据上靠) 6、说说vue双向数据绑定&…...
最新阿里、腾讯、华为、字节等大厂的薪资和职级对比,看看你差了多少...
互联网大厂新入职员工各职级薪资对应表(技术线)~ 最新阿里、腾讯、华为、字节跳动等大厂的薪资和职级对比 上面的表格不排除有很极端的收入情况,但至少能囊括一部分同职级的收入。这个表是“技术线”新入职员工的职级和薪资情况,非技术线(如产品、运营、…...
OpenCV——常用函数
cv::circle(overlay, pt, 2, cv::Scalar(0,green,red),-1); 使用OpenCV库中的circle()函数在图像上绘制圆形的代码。 具体来说,它的参数如下: - overlay:图像,在该图像上绘制圆形; - pt:圆心位置的cv:…...
超详细从入门到精通,pytest自动化测试框架实战-fixture多样玩法(九)
目录:导读前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结(尾部小惊喜)前言 在编写测试用例&…...
OJ练习第70题——困于环中的机器人
困于环中的机器人 力扣链接:1041. 困于环中的机器人 题目描述 在无限的平面上,机器人最初位于 (0, 0) 处,面朝北方。注意: 北方向 是y轴的正方向。 南方向 是y轴的负方向。 东方向 是x轴的正方向。 西方向 是x轴的负方向。 机器人可以接受…...
运行时内存数据区之虚拟机栈——局部变量表
这篇内容十分重要,文字也很多,仔细阅读后,你必定有所收获! 基本内容 与程序计数器一样,Java虚拟机栈(Java Virtual Machine Stack)也是线程私有的,它的生命周期与线程相同。虚拟机栈描述的是Java方法执行的线程内存模型…...
Java中常用算法及示例-分治、迭代、递归、递推、动态规划、回溯、穷举、贪心
场景 1、分治算法的基本思想是将一个计算复杂的问题分成规模较小、计算简单的小问题求解, 然后综合各个小问题,得到最终答案。 2、穷举(又称枚举)算法的基本思想是从所有可能的情况中搜索正确的答案。 3、迭代法(Iterative Method) 无法使用公式一次…...
2个 windows 下的网络测试工具
环境windows 10 64bittcpingtcproute简介TCPing 和 TCProute 都是 windows 下的用于测试 TCP 连接的工具,它们可以帮助用户确定网络连接的可用性和响应时间。TCPing下载地址: https://elifulkerson.com/projects/tcping.phpTCPing 通过向目标主机发送 TC…...
HDU - 4734 -- F(x)
题目如下: For a decimal number x with n digits (AnAn−1An−2...A2A1)(A_nA_{n-1}A_{n-2} ... A_2A_1)(AnAn−1An−2...A2A1), we define its weight as F(x)An∗2n−1An−1∗2n−2...A2∗2A1∗1.F(x) A_n * 2^{n-1} A_{n-1} * 2^{n-2} ... A_2 *…...
【音视频第10天】GCC论文阅读(1)
A Google Congestion Control Algorithm for Real-Time Communication draft-alvestrand-rmcat-congestion-03论文理解 看中文的GCC算法一脸懵。看一看英文版的,找一找感觉。 目录Abstract1. Introduction1.1 Mathematical notation conventions2. System model3.Fe…...
设计模式和设计原则回顾
设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...
关于nvm与node.js
1 安装nvm 安装过程中手动修改 nvm的安装路径, 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解,但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后,通常在该文件中会出现以下配置&…...
django filter 统计数量 按属性去重
在Django中,如果你想要根据某个属性对查询集进行去重并统计数量,你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求: 方法1:使用annotate()和Count 假设你有一个模型Item,并且你想…...
DBAPI如何优雅的获取单条数据
API如何优雅的获取单条数据 案例一 对于查询类API,查询的是单条数据,比如根据主键ID查询用户信息,sql如下: select id, name, age from user where id #{id}API默认返回的数据格式是多条的,如下: {&qu…...
第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词
Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵,其中每行,每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid,其中有多少个 3 3 的 “幻方” 子矩阵&am…...
稳定币的深度剖析与展望
一、引言 在当今数字化浪潮席卷全球的时代,加密货币作为一种新兴的金融现象,正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而,加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下,稳定…...
Fabric V2.5 通用溯源系统——增加图片上传与下载功能
fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...
视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)
前言: 最近在做行为检测相关的模型,用的是时空图卷积网络(STGCN),但原有kinetic-400数据集数据质量较低,需要进行细粒度的标注,同时粗略搜了下已有开源工具基本都集中于图像分割这块,…...
解析两阶段提交与三阶段提交的核心差异及MySQL实现方案
引言 在分布式系统的事务处理中,如何保障跨节点数据操作的一致性始终是核心挑战。经典的两阶段提交协议(2PC)通过准备阶段与提交阶段的协调机制,以同步决策模式确保事务原子性。其改进版本三阶段提交协议(3PC…...
基于江科大stm32屏幕驱动,实现OLED多级菜单(动画效果),结构体链表实现(独创源码)
引言 在嵌入式系统中,用户界面的设计往往直接影响到用户体验。本文将以STM32微控制器和OLED显示屏为例,介绍如何实现一个多级菜单系统。该系统支持用户通过按键导航菜单,执行相应操作,并提供平滑的滚动动画效果。 本文设计了一个…...
