当前位置: 首页 > news >正文

投票感知器参数学习算法

投票感知器参数学习算法

以下为投票感知器参数学习算法的伪代码:


输入:训练集 (x1,y1),(x2,y2),...,(xn,yn)(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)(x1,y1),(x2,y2),...,(xn,yn),学习率 η\etaη,最大迭代次数 TTT
输出:权重向量 www,偏置 bbb

初始化权重向量 www 和偏置 bbb 为0。
for i = 1 to T do
 for j = 1 to n do
  if yj(w⋅xj+b)≤0y_j(w\cdot x_j + b) \leq 0yj(wxj+b)0 then
   w←w+ηyjxjw \leftarrow w + \eta y_j x_jww+ηyjxj
   b←b+ηyjb \leftarrow b + \eta y_jbb+ηyj
  end if
 end for
end for
返回权重向量 www 和偏置 bbb


在上述算法中,w⋅xjw\cdot x_jwxj 表示权重向量 www 和样本 xjx_jxj 的点积,yjy_jyj 是第 jjj 个样本的真实标签,η\etaη 是学习率,TTT 是最大迭代次数。在算法的每次迭代中,对于每个样本 xjx_jxj,如果 yj(w⋅xj+b)≤0y_j(w\cdot x_j + b) \leq 0yj(wxj+b)0,则更新权重向量 www 和偏置 bbb,使得模型能够更好地预测样本的标签。在训练结束后,算法返回学习到的权重向量 www 和偏置 bbb,可以用于对新样本进行预测。

相关文章:

投票感知器参数学习算法

投票感知器参数学习算法 以下为投票感知器参数学习算法的伪代码: 输入:训练集 (x1,y1),(x2,y2),...,(xn,yn)(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)(x1​,y1​),(x2​,y2​),...,(xn​,yn​),学习率 η\etaη,最大迭代次数 TTT…...

Hyper-v下安装CentOS-Stream-9

1、我不想要动态扩展的硬盘,固定大小硬盘性能更高,所以这里我先创建一个固定硬盘(如果你想用动态扩展的硬盘,那么可以省略前面几步,直接从第7步开始,并在第12步选择创建可动态扩展的虚拟硬盘)&a…...

数据结构之顺序表,实现顺序表的增删改查

目录 一、顺序表的概念 二、顺序表的分类 1.静态顺序表 2.动态顺序表 3.顺序表的增删改查 总结 一、顺序表的概念 顺序表是一段物理地址连续的村塾单元依次存储数据元素的线性结构,一般情况下使用数组存储,在数组上完成数据的增删改查。 二、顺…...

HTB-Jeeves

HTB-Jeeves信息收集80端口50000端口![在这里插入图片描述](https://img-blog.csdnimg.cn/5824bf345bc040ee9e449bebeade9495.png)开机kohsuke -> Administrator信息收集 80端口 ask jeeves是一款以回答用户问题提问的自然语言引擎,面对问题首先查看数据库里是否…...

大力出奇迹——GPT系列论文学习(GPT,GPT2,GPT3,InstructGPT)

目录说在前面1.GPT1.1 引言1.2 训练范式1.2.1 无监督预训练1.2.2 有监督微调1.3 实验2. GPT22.1 引言2.2 模型结构2.3 训练范式2.4 实验3.GPT33.1引言3.2 模型结构3.3 训练范式3.4 实验3.4.1数据集3.5 局限性4. InstructGPT4.1 引言4.2 方法4.2.1 数据收集4.2.2 各部分模型4.3 …...

Linux ubuntu更新meson版本

问题描述 在对项目源码用meson进行编译时,可能出现以下错误 meson.build:1:0: ERROR: Meson version is 0.45.1 but project requires > 0.58.0. 或者 meson_options.txt:1:0: ERROR: Unknown type feature. 等等,原因是meson版本跟设置的不适配。 …...

匹配yyyy-MM-dd日期格式的正则表达式

^\d{4}-(0[1-9]|1[0-2])-(0[1-9]|[12]\d|3[01])$ 解释: ^:匹配行的开头 \d{4}:匹配四个数字,表示年份 -:匹配一个横杠 (0[1-9]|1[0-2]):匹配01到12的月份,0开头的要匹配两位数字,1开…...

【失业预告】生成式人工智能 (GAI)AIGC

文章目录AIGCGAIAGI应用1. 计算机领域2. 金融领域3. 电商领域4. C端娱乐5. 游戏领域6. 教育领域7. 工业领域8. 医疗领域9. 法律领域10. 农业/食品领域11. 艺术/设计领域来源AIGC AIGC,全称为Artificial Intelligence Generated Content,是一种新型的人工…...

TensorFlow 2.0 的新增功能:第一、二部分

原文:What’s New in TensorFlow 2.0 协议:CC BY-NC-SA 4.0 译者:飞龙 本文来自【ApacheCN 深度学习 译文集】,采用译后编辑(MTPE)流程来尽可能提升效率。 不要担心自己的形象,只关心如何实现目…...

Spring Boot配置文件详解

前言 Spring Boot 官方提供了两种常用的配置文件格式,分别是properties、YML格式。相比于properties来说,YML更加年轻,层级也是更加分明。 1. properties格式简介 常见的一种配置文件格式,Spring中也是用这种格式,语…...

实习面试题整理1

1、进行一下自我介绍 2、介绍一下你简历里的两个项目 3、说说vue的生命周期(具体作用) 4、说说你对vue单页面和多页面应用的理解 5、说说vue里自带的数组方法(七种,往响应式数据上靠) 6、说说vue双向数据绑定&…...

最新阿里、腾讯、华为、字节等大厂的薪资和职级对比,看看你差了多少...

互联网大厂新入职员工各职级薪资对应表(技术线)~ 最新阿里、腾讯、华为、字节跳动等大厂的薪资和职级对比 上面的表格不排除有很极端的收入情况,但至少能囊括一部分同职级的收入。这个表是“技术线”新入职员工的职级和薪资情况,非技术线(如产品、运营、…...

OpenCV——常用函数

cv::circle(overlay, pt, 2, cv::Scalar(0,green,red),-1); 使用OpenCV库中的circle()函数在图像上绘制圆形的代码。 具体来说,它的参数如下: - overlay:图像,在该图像上绘制圆形; - pt:圆心位置的cv:…...

超详细从入门到精通,pytest自动化测试框架实战-fixture多样玩法(九)

目录:导读前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结(尾部小惊喜)前言 在编写测试用例&…...

OJ练习第70题——困于环中的机器人

困于环中的机器人 力扣链接:1041. 困于环中的机器人 题目描述 在无限的平面上,机器人最初位于 (0, 0) 处,面朝北方。注意: 北方向 是y轴的正方向。 南方向 是y轴的负方向。 东方向 是x轴的正方向。 西方向 是x轴的负方向。 机器人可以接受…...

运行时内存数据区之虚拟机栈——局部变量表

这篇内容十分重要,文字也很多,仔细阅读后,你必定有所收获! 基本内容 与程序计数器一样,Java虚拟机栈(Java Virtual Machine Stack)也是线程私有的,它的生命周期与线程相同。虚拟机栈描述的是Java方法执行的线程内存模型&#xf…...

Java中常用算法及示例-分治、迭代、递归、递推、动态规划、回溯、穷举、贪心

场景 1、分治算法的基本思想是将一个计算复杂的问题分成规模较小、计算简单的小问题求解, 然后综合各个小问题,得到最终答案。 2、穷举(又称枚举)算法的基本思想是从所有可能的情况中搜索正确的答案。 3、迭代法(Iterative Method) 无法使用公式一次…...

2个 windows 下的网络测试工具

环境windows 10 64bittcpingtcproute简介TCPing 和 TCProute 都是 windows 下的用于测试 TCP 连接的工具,它们可以帮助用户确定网络连接的可用性和响应时间。TCPing下载地址: https://elifulkerson.com/projects/tcping.phpTCPing 通过向目标主机发送 TC…...

HDU - 4734 -- F(x)

题目如下: For a decimal number x with n digits (AnAn−1An−2...A2A1)(A_nA_{n-1}A_{n-2} ... A_2A_1)(An​An−1​An−2​...A2​A1​), we define its weight as F(x)An∗2n−1An−1∗2n−2...A2∗2A1∗1.F(x) A_n * 2^{n-1} A_{n-1} * 2^{n-2} ... A_2 *…...

【音视频第10天】GCC论文阅读(1)

A Google Congestion Control Algorithm for Real-Time Communication draft-alvestrand-rmcat-congestion-03论文理解 看中文的GCC算法一脸懵。看一看英文版的,找一找感觉。 目录Abstract1. Introduction1.1 Mathematical notation conventions2. System model3.Fe…...

AI Agent与Agentic AI:原理、应用、挑战与未来展望

文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例:使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例:使用OpenAI GPT-3进…...

JavaScript 中的 ES|QL:利用 Apache Arrow 工具

作者:来自 Elastic Jeffrey Rengifo 学习如何将 ES|QL 与 JavaScript 的 Apache Arrow 客户端工具一起使用。 想获得 Elastic 认证吗?了解下一期 Elasticsearch Engineer 培训的时间吧! Elasticsearch 拥有众多新功能,助你为自己…...

3.3.1_1 检错编码(奇偶校验码)

从这节课开始,我们会探讨数据链路层的差错控制功能,差错控制功能的主要目标是要发现并且解决一个帧内部的位错误,我们需要使用特殊的编码技术去发现帧内部的位错误,当我们发现位错误之后,通常来说有两种解决方案。第一…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院查看报告小程序

一、开发环境准备 ​​工具安装​​: 下载安装DevEco Studio 4.0(支持HarmonyOS 5)配置HarmonyOS SDK 5.0确保Node.js版本≥14 ​​项目初始化​​: ohpm init harmony/hospital-report-app 二、核心功能模块实现 1. 报告列表…...

python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)

更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...

JVM暂停(Stop-The-World,STW)的原因分类及对应排查方案

JVM暂停(Stop-The-World,STW)的完整原因分类及对应排查方案,结合JVM运行机制和常见故障场景整理而成: 一、GC相关暂停​​ 1. ​​安全点(Safepoint)阻塞​​ ​​现象​​:JVM暂停但无GC日志,日志显示No GCs detected。​​原因​​:JVM等待所有线程进入安全点(如…...

浪潮交换机配置track检测实现高速公路收费网络主备切换NQA

浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求,本次涉及的主要是收费汇聚交换机的配置,浪潮网络设备在高速项目很少,通…...

08. C#入门系列【类的基本概念】:开启编程世界的奇妙冒险

C#入门系列【类的基本概念】:开启编程世界的奇妙冒险 嘿,各位编程小白探险家!欢迎来到 C# 的奇幻大陆!今天咱们要深入探索这片大陆上至关重要的 “建筑”—— 类!别害怕,跟着我,保准让你轻松搞…...

MySQL JOIN 表过多的优化思路

当 MySQL 查询涉及大量表 JOIN 时,性能会显著下降。以下是优化思路和简易实现方法: 一、核心优化思路 减少 JOIN 数量 数据冗余:添加必要的冗余字段(如订单表直接存储用户名)合并表:将频繁关联的小表合并成…...

协议转换利器,profinet转ethercat网关的两大派系,各有千秋

随着工业以太网的发展,其高效、便捷、协议开放、易于冗余等诸多优点,被越来越多的工业现场所采用。西门子SIMATIC S7-1200/1500系列PLC集成有Profinet接口,具有实时性、开放性,使用TCP/IP和IT标准,符合基于工业以太网的…...