MATLAB应用笔记
其他
1、NaN值
MATLAB判断数据是否为NaN可以直接使用函数:isnan()
三、数据分析
1、相关性
均值、方差、协方差、标准差、相关系数
mean() %均值
nanmean()%去除NAN值求均值
var() %方差
cov() %协方差
std() %标准差
corrcoef(B,b) %R² 相关系数plot() %绘图
rcoplot(r,rint) %残差个案排序图,详情后见
二维数组中所有非NAN元素的平均值
AA = reshape(A, size(A,1)*size(A,2),1)%将2维转1维
A=nanmean(AA)
1.1 散点图、折线图
绘图详情见后方 :二、绘图
plot(x,y,'*',X,Y,'-')
1.2 协方差及协方差矩阵
协方差用来衡量两个变量的总体误差,如果两个变量的变化趋势一致,协方差就是正值,说明两个变量正相关。如果两个变量的变化趋势相反,协方差就是负值,说明两个变量负相关。如果两个变量相互独立,那么协方差就是0,说明两个变量不相关。
1.3 相关系数
相关系数(Correlation coefficient)是反应变量之间关系密切程度的统计指标,相关系数的取值区间在1到-1之间。1表示两个变量完全线性相关,-1表示两个变量完全负相关,0表示两个变量不相关。数据越趋近于0表示相关关系越弱。
R
R²
标准差
协方差
2、分析测试
2.1 一元回归及多元回归、残差图分析
回归分析(regression analysis)是确定两组或两组以上变量间关系的统计方法。
B=data(:,3);
B=B';
b=data(:,6);
b=b';
X = [ones(length(b),1), B'];%x'表示行向量转置为列向量
Y = b';
%根据输入参数y与X,用最小二乘法求线性回归系数b
[ b,bint,r,rint,stats ] = regress(Y,X);
rcoplot(r,rint) %残差个案排序图
a=b(1)+(b(2))*B
plot(B,Y,'*',B,a,'-') %残差点线图
2.2 显著性水平p值
[r,p]=corr(yy',xx'); %p为显著性水平
%[h,p,ci,stats1] = ttest2(yy,xx);
一、不同格式文件数据的读取、写入、存储
1、常用
1.1 .xls、.xlsx
将p写入表格路径,读取成p,读取xls中字符串
xlswrite ('D:\study\AOD\2020beijing\data.xls', P);
p=xlsread('D:\study\AOD\2020beijing\data.xls');
p=xlsread('D:\study\AOD\2020beijing\data.xls','Sheet1');%sheet1子表格名
[~,~,raw]=xlsread('D:\study\CE-318\a指数550_2021_1.xlsx','Sheet2')%raw获取包括字符串内容
data=raw(:,:);
1.2 .mat
另存为Excel数据
(1)将matlab中mat格式的数据保存为 xls 文件,命令为:
xlswrite('训练_42.xlsx',sounds_y2);
%其中“训练_42.xlsx”为另存为文件的名称,sounds_y2为原mat格式的数据
(2)将Excel数据读入到matlab中,命令为:
testlabel=xlsread('testlabel.xlsx');
2、专业
.tiff、.tif
[A,R] = geotiffread(‘文件路径’)
A:数据
R:属性
[A,R] = geotiffread('D:\study\AOD\AVR\2021002.tif') %%%多波段
filepath='D:\study\AOD\AVR\2021002.tif'; %%图像名称与路径
Info=imfinfo(filepath); %%获取图片信息
Slice=size(Info,1); %%获取图片z向帧数
Width=Info.Width;
Height=Info.Height;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Image=zeros(Height,Width,Slice);
for i=1:SliceImage(:,:,i)=imread(filepath,i); %%一层一层的读入图像
end
.hdr
该函数语法规则为:
X = multibandread(filename, size, precision, offset, interleave, byteorder)
filename: 文件名
size:图像尺寸和波段数,size = [ 行数 列数 波段数 ]
precision:读取的图像的数据格式,例如’uint8’,‘uint16’,‘double’等
offset:偏移(这个参数目前我还不是很懂)
interleave:存储的图像的数据格式,有 bsq,bil,bip三种格式
byteorder : 数据存储的字节排列方式,有’ieee-le’(小端),‘ieee-be’(大端)
hdr = read_envihdr('D:\study\AOD\data1\MYD04_L2.A2021001.0900.061.20210_Swath_2D_1_georef.hdr')
Image = multibandread('D:\study\AOD\data1\MYD04_L2.A2021001.0900.061.20210_Swath_2D_1_georef.dat',hdr.size,[hdr.format '=>single'],hdr.header_offset,hdr.interleave,hdr.machine);
% A=Image(:,:,1);
% B=Image(:,:,2);
% C=Image(:,:,3);
A=Image(:,:,4);
.nc
ncFilePath='D:\Alice\研\modis,matlab\data\MYD04_L2.A2020354.0435.061.2020357193838.nc';
%路径
ncdisp(ncFilePath,'/','full');
lon=ncread(ncFilePath,'lon'); %经纬度
lat=ncread(ncFilePath,'lat');%% 显⽰结构
% ncdisp(ncFilePath);%在命令⾏窗⼝中以⽂本形式显⽰ NetCDF 数据源 source 中的所有组、维度、变量定义,以及所有属
性。
% ncdisp(ncFilePath,‘evap’);%显⽰指定变量的内容.
% ncdisp(ncFilePath,’/’,‘min’);%只显⽰⽰例⽂件 example.nc 的组层次结构和变量定义。
% ncdisp(ncFilePath,’/’,‘full’);%全部显⽰所有结构和定义信息
%% 读取变量值
% ncid = netcdf.open(ncFilePath,‘NOWRITE’); %打开nc⽂件返回索引ID
% [ndims,nvars,ngglobalatts,unlimdimid] = netcdf.inq(ncid);%获取维数,变量数,全局属性数量,
% [varname,xtype,dimids,natts] = netcdf.inqVar(ncid,0); %根据变量索引号获取变量的名称
lon=ncread(ncFilePath,‘lon’);%读取经度变量
lat=ncread(ncFilePath,‘lat’);%读取纬度变量
sm_data=ncread(ncFilePath,‘sm’);%读取sm变量
sm_data1=sm_data(1174:1194,240:262);
sm_data1(sm_data10)=[];
aa=sm_data1;
[h,l]=find(aa0);
aa(h,l)=[];
%% 显⽰数据
% pcolor(lat,lon,sm_data);pcolor(X,Y,C) 指定顶点的 x 坐标和 y 坐标,C 的⼤⼩必须与 x-y 坐标⽹格的⼤⼩匹配,例如,如果
X 和 Y 定义⼀个 m×n ⽹格,则 C 必须为 m×n 矩阵.
% [x,y]=meshgrid(lon,lat);%根据经纬度信息产⽣格⽹.
% phandle=pcolor(x,y,sm_data’);%显⽰⼀个矩阵,其中x,y,sm_data的⾏列数必须⼀致。类似surface函数.
% colorbar
% imwrite(sm_data1,‘D:\Alice\研\modis\aa.tif’,‘tif’)
%% 保存为地理栅格tif格式,以便ArcGIS读取.
data=flipud(sm_data1);
R = georasterref(‘RasterSize’, size(data),‘Latlim’, [double(min(lat)) double(max(lat))], ‘Lonlim’,
[double(min(lon)) double(max(lon))]);%地理栅格数据参考对象(类)
geotiffwrite(‘D:\Alice\研\modis\aa.tif’,data,R);
3、批量读取
csv_path= 'D:\study\CE-318\北京-CAMS(39.933牛顿,116.317牛顿)\'; %文件夹路径
path_list = dir(strcat(csv_path,'*.csv'));
%dir 函数 列出当前目录下所有子文件夹和文件%list_num = length(path_list);%%文件数量
for i=1:list_num
%%%%%
end
3.1带字符串csv批量读取
参考:https://blog.csdn.net/qq_41661878/article/details/119330873
uiopen('D:\study\CE-318\beijingN39.977,E116.381\data\20170101_20171231_Beijing.csv',1)
4、批量存储(自定义命名)
xlswrite(strcat(csv_path,yearname,'.xlsx'),DATA);
%自定义命名将DATA写入表格
%csv_path路径yearname名字
二、绘图
1、图形
title('图形名称') %(都放在单引号内)
xlabel('x轴说明')
ylabel('y轴说明')
text(x,y,'图形说明','fontsize',16)
legend('图例1','图例2',)
set(gca,‘XTickLabel’,[1991:1:2009]);%给X轴坐标加标签 (1991-2009间隔1)
xtickangle(50)%更改x轴标签角度
2、坐标控制
axis equal :纵横坐标轴采用等长刻度
axis square:产生正方形坐标系(默认为矩形)
axis auto:使用默认设置
axis off:取消坐标轴
axis on :显示坐标轴
axis([xmin xmax ymin ymax])
命令可以限制二维图像的x和y坐标,此处输入axis([0 2pi -2 2]),限制横坐标为0到2pi,纵坐标为-2到2。
3、图例注释
legend(‘text1‘, ‘text2‘,…)
4、文本注释
在图形中任意位置添加文本注释,用到的函数为text。其调用语法为text(x,y,‘text’),x、y为标注点的坐标位置,text为添加的文本注释。
text(x,y,‘标注名’)或者text(x,y,z,‘标注名’)
Matlab绘图基础——给图像配文字说明(text对象)
5、线型
例 plot(x,y,'k*',x1,y1,'b--')
matlab怎么设置自定义和旋转坐标轴刻度值及标签参考
%设置x轴范围和刻度
set(gca,‘XLim’,[0 10]);%X轴的数据显示范围
set(gca,‘XTick’,[0:1:10]);%设置要显示坐标刻度
set(gca,‘XTickLabel’,[0:1:10]);%给坐标加标签
使用plot()绘制一个图形,如我们在MATLAB命令窗口中输入代码:
a= linspace(-15,0.1,15); %坐标刻度-15~15、间距0.1
b=sin(a);
plot(a,b)
将绘制一个横坐标-15到15的正弦函数曲线图。
使用xticks()函数,xticklabels()函数,以及yticks()函数在指定位置显示横坐标和纵坐标刻度值,间距可以不一致。
xticks([-3pi -2pi -pi 0 pi 2pi 3pi])
xticklabels({‘-3\pi’,‘-2\pi’,‘-\pi’,‘0’,‘\pi’,‘2\pi’,‘3\pi’})
yticks([-1 -0.9 -0.5 0 0.4 0.7 1])
旋转横坐标和纵坐标标签或刻度的角度,使用xtickangle()函数和ytickangle()函数
a= 511rand(1,33);
b=rand(1,33);
scatter(a,b,'r’)
xtickangle(50)
ytickangle(80)
6、颜色
相关文章:

MATLAB应用笔记
其他 1、NaN值 MATLAB判断数据是否为NaN可以直接使用函数:isnan() 三、数据分析 1、相关性 均值、方差、协方差、标准差、相关系数 mean() %均值 nanmean()%去除NAN值求均值 var() %方差 cov() %协方差 std() %标准差 corrcoef(B,b) %R 相关系数plot()…...

ERTEC200P-2 PROFINET设备完全开发手册(6-2)
6.2 诊断与报警实验 首先确认固件为 App1_STANDARD, 将宏定义改为: #define EXAMPL_DEV_CONFIG_VERSION 1 参照第6节的内容,编译和调试固件,并在TIA Portal 中建立RT项目。启动固件后,TIA Portal 切换到在线,可以看…...

算法套路八——二叉树深度优先遍历(前、中、后序遍历)
算法套路八——二叉树深度优先遍历(前、中、后序遍历) 算法示例:LeetCode98:验证二叉搜索树 给你一个二叉树的根节点 root ,判断其是否是一个有效的二叉搜索树。 有效 二叉搜索树定义如下: 节点的左子树只…...

视频批量剪辑:如何给视频添加上下黑边并压缩视频容量。
视频太多了,要如何进行给视频添加上下黑边并压缩视频容量?今天就由小编来教教大家要如何进行操作,感兴趣的小伙伴们可以来看看。 首先,我们要进入视频剪辑高手主页面,并在上方板块栏里选择“批量剪辑视频”板块&#…...
那些你需要知道的互联网广告投放知识
作为一个合格的跨境电商卖家,我们除了有好的产品之外,还要知道怎么去营销我们自己的产品。没有好的推广,即使你的产品有多好别人也是很难看得到的。今天龙哥就打算出一期基础的互联网广告投放科普,希望可以帮到各位增加多一点相关…...

【hello Linux】进程程序替换
目录 1. 程序替换的原因 2. 程序替换原理 3. 替换函数 4. 函数解释 5. 命名理解 6.简陋版shell的制作 补充: Linux🌷 1. 程序替换的原因 进程自创建后只能执行该进程对应的程序代码,那么我们若想让该进程执行另一个“全新的程序”这 便要用…...

【网络应用开发】实验4——会话管理
目录 会话管理预习报告 一、实验目的 二、实验原理 三、实验预习内容 1. 什么是会话,一个会话的生产周期从什么时候,到什么时候结束? 2. 服务器是如何识别管理属于某一个特定客户的会话的? 3. 什么是Cookie,它的…...

Linux服务器怎么分区
Linux服务器怎么分区 我是艾西,linux系统除了从业某个行业经常要用到的程序员比较熟悉,对于小白或只会用Windows系统的小伙伴还是会比较难上手的。今天艾西简单的跟大家聊聊linux系统怎么分区,让身为小白的你也能一眼看懂直接上手操作感受程序…...

传统机器学习(四)聚类算法DBSCAN
传统机器学习(四)聚类算法DBSCAN 1.1 算法概述 DBSCAN(Density-Based Spatial Clustering of Applications with Noise,具有噪声的基于密度的聚类方法)是一种基于密度的空间聚类算法。 该算法将具有足够密度的区域划分为簇,并在…...
“华为杯”研究生数学建模竞赛2020年-【华为杯】A题:ASIC 芯片上的载波恢复 DSP 算法设计与实现(附获奖论文及matlab代码实现)
目录 摘 要: 1.问题重述 1.1 问题背景 1.2 问题提出 1.3 研究基础 2.模型假设和已知...
1043.分隔数组以得到最大和
题目: 给你一个整数数组 arr,请你将该数组分隔为长度 最多 为 k 的一些(连续)子数组。分隔完成后,每个子数组的中的所有值都会变为该子数组中的最大值。 返回将数组分隔变换后能够得到的元素最大和。本题所用到的测试…...

微服务治理框架(Istio)的认证服务与访问控制
本博客地址:https://security.blog.csdn.net/article/details/130152887 一、认证服务 1.1、基于JWT的认证 在微服务架构下,每个服务是无状态的,由于服务端需要存储客户端的登录状态,因此传统的session认证方式在微服务中不再适…...

数据结构 | 排序 - 总结
排序的方式 排序的稳定性 什么是排序的稳定性? 不改变相同数据的相对顺序 排序的稳定性有什么意义? 假定一个场景: 一组成绩:100,88,98,98,78,100(按交卷顺序…...

crontab -e 系统定时任务
crontab -e解释 crontab 是由 “cron” 和 “table” 两个单词组成的缩写。其中,“cron” 是一个在 Linux 和类 Unix 操作系统中用于定时执行任务的守护进程,而 “table” 则是指一个表格或者列表,因此 crontab 就是一个用于配置和管理定时任…...

前后端交互系列之Axios详解(包括拦截器)
目录 前言一,服务器的搭建二,Axios的基本使用2.1 Axios的介绍及页面配置2.2 如何安装2.3 Axios的前台代码2.4 Axios的基本使用2.5 axios请求响应结果的结构2.6 带参数的axios请求2.7 axios修改默认配置 三,axios拦截器3.1 什么是拦截器3.2 拦…...

定时任务之时间轮算法
初识时间轮 我们先来考虑一个简单的情况,目前有三个任务A、B、C,分别需要在3点钟,4点钟和9点钟执行,可以把时间想象成一个钟表。 如上图中所示,我只需要把任务放到它需要被执行的时刻,然后等着时针转到这个…...

实验4 Matplotlib数据可视化
1. 实验目的 ①掌握Matplotlib绘图基础; ②运用Matplotlib,实现数据集的可视化; ③运用Pandas访问csv数据集。 2. 实验内容 ①绘制散点图、直方图和折线图,对数据进行可视化; ②下载波士顿数房价据集,并…...

【软件工程】为什么要选择软件工程专业?
个人主页:【😊个人主页】 文章目录 前言软件工程💻💻💻就业岗位👨💻👨💻👨💻就业前景🛩️🛩️🛩️工作环…...
5类“计算机”专业很吃香,人才缺口巨大,就业前景良好
说到目前最热门的专业,计算机绝对占有一席之地,是公认的发展前景好、人才缺口大的专业。有人称该专业人数如此众多,势必会导致人才饱和,但是从当前社会互联网发展的趋势来看,计算机专业在很长一段时间都是发展很好的专…...
数仓选型对比
1、数仓选型对比如下(先列举表格,后续逐个介绍) 数仓应用目标产品特点适用于 适用数据类型数据处理速度性能拓展 实施难度运维难度性能优化成本传统数仓(SQLServer、Oracle等关系型数据库)面向主题设计的,为 分析数据而设计基于Oracle、 SQLServer、MyS…...
后进先出(LIFO)详解
LIFO 是 Last In, First Out 的缩写,中文译为后进先出。这是一种数据结构的工作原则,类似于一摞盘子或一叠书本: 最后放进去的元素最先出来 -想象往筒状容器里放盘子: (1)你放进的最后一个盘子(…...

7.4.分块查找
一.分块查找的算法思想: 1.实例: 以上述图片的顺序表为例, 该顺序表的数据元素从整体来看是乱序的,但如果把这些数据元素分成一块一块的小区间, 第一个区间[0,1]索引上的数据元素都是小于等于10的, 第二…...

使用VSCode开发Django指南
使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架,专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用,其中包含三个使用通用基本模板的页面。在此…...
OkHttp 中实现断点续传 demo
在 OkHttp 中实现断点续传主要通过以下步骤完成,核心是利用 HTTP 协议的 Range 请求头指定下载范围: 实现原理 Range 请求头:向服务器请求文件的特定字节范围(如 Range: bytes1024-) 本地文件记录:保存已…...

视频字幕质量评估的大规模细粒度基准
大家读完觉得有帮助记得关注和点赞!!! 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用,因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型(VLMs)在字幕生成方面…...
MySQL用户和授权
开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务: test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...
Swagger和OpenApi的前世今生
Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章,二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑: 🔄 一、起源与初创期:Swagger的诞生(2010-2014) 核心…...

pikachu靶场通关笔记19 SQL注入02-字符型注入(GET)
目录 一、SQL注入 二、字符型SQL注入 三、字符型注入与数字型注入 四、源码分析 五、渗透实战 1、渗透准备 2、SQL注入探测 (1)输入单引号 (2)万能注入语句 3、获取回显列orderby 4、获取数据库名database 5、获取表名…...
深入浅出Diffusion模型:从原理到实践的全方位教程
I. 引言:生成式AI的黎明 – Diffusion模型是什么? 近年来,生成式人工智能(Generative AI)领域取得了爆炸性的进展,模型能够根据简单的文本提示创作出逼真的图像、连贯的文本,乃至更多令人惊叹的…...
DAY 26 函数专题1
函数定义与参数知识点回顾:1. 函数的定义2. 变量作用域:局部变量和全局变量3. 函数的参数类型:位置参数、默认参数、不定参数4. 传递参数的手段:关键词参数5 题目1:计算圆的面积 任务: 编写一…...