机器学习实战--梯度下降法进行波士顿房价预测
前言:
Hello大家好,我是Dream。 今天来学习一下如何使用机器学习梯度下降法进行波士顿房价预测,这是简单的一个demo,主要展示的是一些小小的思路~
本文目录:
- 一、波士顿房价预测
- 1.全部的数据可视化
- 2.地理数据可视化
- 3.房价和人口及位置数据可视化
- 4.所有相关数据的可视化
- 5.房价和收入的可视化
- 6.房价预测的线性回归模型训练
- 梯度下降法
- 二、完整代码
- 1.正规方程
- 2.梯度下降法
- 源工程文件
一、波士顿房价预测
sklearn提供给我们两种实现的API, 可以根据选择使用:
正规方程
sklearn.linear_model.LinearRegression()
梯度下降法
sklearn.linear_model.SGDRegressor()
1.全部的数据可视化
data.hist(bins=50, figsize=(20, 15))
2.地理数据可视化
data.plot(kind="scatter", x="longitude", y="latitude", alpha=0.4);
3.房价和人口及位置数据可视化
data.plot(kind="scatter", x="longitude", y="latitude", alpha=0.6,s=data["population"]/100, label="population", figsize=(11,8),c="median_house_value", cmap=plt.get_cmap("jet"))
4.所有相关数据的可视化
features = ["median_house_value", "median_income", "total_rooms", "housing_median_age"]
scatter_matrix(housing[features], figsize=(20, 15));
预测median_house_value最相关的特征是median_income。
5.房价和收入的可视化
data.plot(kind="scatter", x="median_income", y="median_house_value", alpha=0.4);
最后得到和房价最相关的是收入数据
6.房价预测的线性回归模型训练
梯度下降法
def test():
m = 10000
x = np.random.normal(size=m)X = x.reshape(-1, 1)
y = 4. * x + 3. + np.random.normal(0, 3, size=m)X_train, X_test, y_train, y_test = train_test_split(X, y)standardscaler = StandardScaler()standardscaler.fit(X_train)
x_train_standard = standardscaler.transform(X_train)lrg = LinearRegression()# lrg.fit_gd(x_train_standard, y_train, eta=0.001, n_iters=1e6)lrg.fit_sgd(x_train_standard, y_train)
二、完整代码
1.正规方程
def linear_model1():"""线性回归:正规方程:return:None"""# 1.获取数据data = load_boston()# 2.数据集划分x_train, x_test, y_train, y_test = train_test_split(data.data, data.target, random_state=22)# 3.特征工程-标准化transfer = StandardScaler()x_train = transfer.fit_transform(x_train)x_test = transfer.fit_transform(x_test)# 4.机器学习-线性回归(正规方程)estimator = LinearRegression()estimator.fit(x_train, y_train)# 5.模型评估# 5.1 获取系数等值y_predict = estimator.predict(x_test)print("预测值为:\n", y_predict)print("模型中的系数为:\n", estimator.coef_)print("模型中的偏置为:\n", estimator.intercept_)# 5.2 评价# 均方误差error = mean_squared_error(y_test, y_predict)print("误差为:\n", error)return None
2.梯度下降法
def linear_model2():"""线性回归:梯度下降法:return:None"""# 1.获取数据data = load_boston()# 2.数据集划分x_train, x_test, y_train, y_test = train_test_split(data.data, data.target, random_state=22)# 3.特征工程-标准化transfer = StandardScaler()x_train = transfer.fit_transform(x_train)x_test = transfer.fit_transform(x_test)# 4.机器学习-线性回归(特征方程)estimator = SGDRegressor(max_iter=1000)estimator.fit(x_train, y_train)# 5.模型评估# 5.1 获取系数等值y_predict = estimator.predict(x_test)print("预测值为:\n", y_predict)print("模型中的系数为:\n", estimator.coef_)print("模型中的偏置为:\n", estimator.intercept_)# 5.2 评价# 均方误差error = mean_squared_error(y_test, y_predict)print("误差为:\n", error)return None
源工程文件
关注此公众号:人生苦短我用Pythons
,获取源码,快点击我吧
🌲🌲🌲 好啦,这就是今天要分享给大家的全部内容了,我们下期再见!
❤️❤️❤️如果你喜欢的话,就不要吝惜你的一键三连了~
最后,有任何问题,欢迎关注下面的公众号,获取第一时间消息、作者联系方式及每周抽奖等多重好礼! ↓↓↓
相关文章:

机器学习实战--梯度下降法进行波士顿房价预测
前言: Hello大家好,我是Dream。 今天来学习一下如何使用机器学习梯度下降法进行波士顿房价预测,这是简单的一个demo,主要展示的是一些小小的思路~ 本文目录:一、波士顿房价预测1.全部的数据可视化2.地理数据可视化3.房…...

黑马】后台管理-项目优化和上线
一。项目优化优化1,加载进度条显示安装一个运行依赖,nprogress然后导包,调用对象展示和隐藏在main中基于拦截器实现展示进度条和隐藏进度条的效果如果触发请求拦截器,证明发起请求,希望展示进度条,如果触发…...
Web 框架 Flask 快速入门(三)数据库-MySQL
课程地址:Python Web 框架 Flask 快速入门 文章目录数据库1、数据库的安装与配置2、数据库的简单使用——增删改1. 定义数据模型2. 增删改3、 关系引用——表的关联4、查询——通过SQLAlchemy扩展5、其他1. 数据模型的实现(疑惑)6、Bug记录1.…...

牛客网Python篇数据分析习题(六)
1.某公司计划举办一场运动会,现有运动会项目数据集items.csv。 包含以下字段: item_id:项目编号; item_name:项目名称; location:比赛场地。 有员工报名情况数据集signup.csv。包含以下字段: employee_id&a…...

Ansible的安装及部署
目录 一、Ansible对于企业运维的重大意义 二、Ansible的安装 三、构建Ansible清单 1.直接书写受管主机名或ip,每行一个 2.设定受管主机的组[组名称] 四、Ansible配置文件参数详解 1、配置文件的分类与优先级 2.配置新用户的Ansible配置 3.生成免密认证 本章…...

链表题目总结 -- 递归
目录一. 递归反转整个链表1. 思路简述2. 代码3. 总结二. 反转链表前 N 个节点1. 思路简述2. 代码3. 总结三、反转链表的一部分1. 思路简述2. 代码3.总结四、从节点M开始反转后面的链表1. 思路简述2. 代码3.总结一. 递归反转整个链表 题目链接:https://leetcode.cn/…...

重写-linux内存管理-伙伴分配器(一)
文章目录一、伙伴系统的结构二、初始化三、分配内存3.1 prepare_alloc_pages3.2 get_page_from_freelist3.2.1 zone_watermark_fast3.2.2 zone_watermark_ok3.2.3 rmqueue3.2.3.1 rmqueue_pcplist3.2.3.2 __rmqueue3.2.3.2.1 __rmqueue_smallest3.2.3.2.2 __rmqueue_fallback3.…...

为什么要用springboot进行开发呢?
文章目录前言1、那么Springboot是怎么实现自动配置的1.1 启动类1.2 SpringBootApplication1.3 Configuration1.4 ComponentScan1.5 EnableAutoConfiguration1.6 两个重要注解1.7 AutoConfigurationPackage注解1.8 Import(AutoConfigurationImportSelector.class)注解1.9自动配置…...
设备树信息解析相关函数
一。可以通过三种不同的方式解析设备树节点: 1.根据设备树节点的名字解析设备树节点 struct device_node *of_find_node_by_name(struct device_node *from, const char *name); 参数: from:当前节点父节点首地址 name:设备树节点名字 …...
LeetCode-1124. 表现良好的最长时间段【哈希表,前缀和,单调栈】
LeetCode-1124. 表现良好的最长时间段【哈希表,前缀和,单调栈】题目描述:解题思路一:查字典。cur是当前的前缀和(劳累与不劳累天数之差),向前遍历。有两种情况。情况一,若cur大于0则是[0,i]的劳累与不劳累天…...

vue-router路由配置
介绍:路由配置主要是用来确定网站访问路径对应哪个文件代码显示的,这里主要描述路由的配置、子路由、动态路由(运行中添加删除路由) 1、npm添加 npm install vue-router // 执行完后会自动在package.json中添加 "vue-router…...

中国计算机设计大赛来啦!用飞桨驱动智慧救援机器狗
中国大学生计算机设计大赛是我国高校面向本科生最早的赛事之一,自2008年开赛至今,一直由教育部高校与计算机相关教指委等或独立或联合主办。大赛的目的是以赛促学、以赛促教、以赛促创,为国家培养德智体美劳全面发展的创新型、复合型、应…...
嘉定区2022年高新技术企业认定资助申报指南
各镇人民政府,街道办事处,嘉定工业区、菊园新区管委会,各相关企业: 为推进实施创新驱动发展战略,加快建设具有全球影响力的科技创新中心,根据《嘉定区关于加快本区高新技术企业发展的实施方案(…...

【C++】关键字、命名空间、输入和输出、缺省参数、函数重载
C关键字(C98)命名空间产生背景命名空间定义命名空间使用输入&输出缺省参数什么叫缺省参数缺省参数分类函数重载函数重载概念C支持函数重载的原理--名字修饰C关键字(C98) C总计63个关键字,C语言32个关键字。 下面我们先看一下C有多少关键字,不对关键…...
【一道面试题】关于HashMap的一系列问题
HashMap底层数据结构在1.7与1.8的变化 1.7是基于数组链表实现的,1.8是基于数组链表红黑树实现的,链表长度达到8时会树化 使用哈希表的好处 使用hash表是为了提升查找效率,比如我现在要在数组中查找一个A对象,在这种情况下是无法…...

论文笔记: Monocular Depth Estimation: a Review of the 2022 State of the Art
中文标题:单目深度估计:回顾2022年最先进技术 本文对比了物种最近的基于深度学习的单目深度估计方法: GPLDepth(2022)[15]: Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepthAdabins(2021)[1]: Adabins:…...

Springmvc补充配置
Controller配置总结 控制器通常通过接口定义或注解定义两种方法实现 在用接口定义写控制器时,需要去Spring配置文件中注册请求的bean;name对应请求路径,class对应处理请求的类。 <bean id"/hello" class"com.demo.Controller.HelloCo…...
MySQL 的 datetime等日期和时间处理SQL函数及格式化显示
MySQL 的 datetime等日期和时间处理SQL函数及格式化显示MySQL 时间相关的SQL函数:MySQL的SQL DATE_FORMAT函数:用于以不同的格式显示日期/时间数据。DATE_FORMAT(date, format) 根据格式串 format 格式化日期或日期和时间值 date,返回结果串。…...

基于微信云开发的防诈反诈宣传教育答题小程序
基于微信云开发的防诈反诈宣传教育答题小程序一、前言介绍作为当代大学生,诈骗事件的发生屡见不鲜,但却未能引起大家的重视。高校以线上宣传、阵地展示为主,线下学习、实地送法为辅,从而构筑立体化反诈骗防线。在线答题考试是一种…...

Map和Set
Map和set是一种专门用来进行搜索的容器或者数据结构,其搜索的效率与其具体的实例化子类有关。数据的一般查找方式有两种:直接遍历和二分查找。但这两种查找方式都有很大的局限性,也不便于对数据进行增删查改等操作。对于这一类数据的查找&…...
Vue记事本应用实现教程
文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展:显示创建时间8. 功能扩展:记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...

51c自动驾驶~合集58
我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留,CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制(CCA-Attention),…...
椭圆曲线密码学(ECC)
一、ECC算法概述 椭圆曲线密码学(Elliptic Curve Cryptography)是基于椭圆曲线数学理论的公钥密码系统,由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA,ECC在相同安全强度下密钥更短(256位ECC ≈ 3072位RSA…...
React hook之useRef
React useRef 详解 useRef 是 React 提供的一个 Hook,用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途,下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...
C++ 基础特性深度解析
目录 引言 一、命名空间(namespace) C 中的命名空间 与 C 语言的对比 二、缺省参数 C 中的缺省参数 与 C 语言的对比 三、引用(reference) C 中的引用 与 C 语言的对比 四、inline(内联函数…...

让AI看见世界:MCP协议与服务器的工作原理
让AI看见世界:MCP协议与服务器的工作原理 MCP(Model Context Protocol)是一种创新的通信协议,旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天,MCP正成为连接AI与现实世界的重要桥梁。…...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”
2025年#高考 将在近日拉开帷幕,#AI 监考一度冲上热搜。当AI深度融入高考,#时间同步 不再是辅助功能,而是决定AI监考系统成败的“生命线”。 AI亮相2025高考,40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕,江西、…...

深度学习水论文:mamba+图像增强
🧀当前视觉领域对高效长序列建模需求激增,对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模,以及动态计算优势,在图像质量提升和细节恢复方面有难以替代的作用。 🧀因此短时间内,就有不…...

AirSim/Cosys-AirSim 游戏开发(四)外部固定位置监控相机
这个博客介绍了如何通过 settings.json 文件添加一个无人机外的 固定位置监控相机,因为在使用过程中发现 Airsim 对外部监控相机的描述模糊,而 Cosys-Airsim 在官方文档中没有提供外部监控相机设置,最后在源码示例中找到了,所以感…...
多模态图像修复系统:基于深度学习的图片修复实现
多模态图像修复系统:基于深度学习的图片修复实现 1. 系统概述 本系统使用多模态大模型(Stable Diffusion Inpainting)实现图像修复功能,结合文本描述和图片输入,对指定区域进行内容修复。系统包含完整的数据处理、模型训练、推理部署流程。 import torch import numpy …...