当前位置: 首页 > news >正文

牛客网Python篇数据分析习题(六)

1.某公司计划举办一场运动会,现有运动会项目数据集items.csv。 包含以下字段:
item_id:项目编号;
item_name:项目名称;
location:比赛场地。
有员工报名情况数据集signup.csv。包含以下字段:
employee_id:员工编号;
name:员工姓名;
sex:性别;
department:所属部门;
item_id:报名项目id
请你统计职能部门(functional)中报名标枪(javenlin)的所有员工的员工编号(employee_id)、姓名(name)及性别(sex)。

import pandas as pditems = pd.read_csv("items.csv", sep=",")
signup = pd.read_csv("signup.csv", sep=",")
pd.set_option("display.unicode.east_asian_width", True)
data = pd.merge(items, signup, how="inner", on="item_id")print(data[(data.department == "functional") & (data.item_name == "javelin")][["employee_id", "name", "sex"]].reset_index(drop=True))

2.某公司计划举办一场运动会,现有运动会项目数据集items.csv。 包含以下字段:
item_id:项目编号;
item_name:项目名称;
location:比赛场地。
有员工报名情况数据集signup.csv。包含以下字段:
employee_id:员工编号;
name:员工姓名;
sex:性别;
department:所属部门;
item_id:报名项目id
请你输出报名的各个项目情况(不包含没人报名的项目)对应的透视表。

import pandas as pdsignup = pd.read_csv("signup.csv")
items = pd.read_csv("items.csv")
x = pd.merge(signup, items, on="item_id")
y = x.pivot_table(index=["sex", "department"],columns="item_name",aggfunc={"employee_id": "size"},fill_value=0,)print(y)

3.现有一个Nowcoder1.csv文件,记录了牛客网的部分用户的个人信息,包含如下字段(字段与字段之间以逗号间隔):
Nowcoder_ID:用户ID
Name:用户名
Level:等级
Achievement_value:成就值
Num_of_exercise:刷题量
Graduate_year:毕业年份
Language:常用语言
另外一个Nowcoder2.csv文件记录了用户的活跃情况,包含如下字段(字段与字段之间以逗号间隔):
Nowcoder_ID:用户ID
Continuous_check_in_days:最近连续签到天数

Number_of_submissions:提交代码次数
Last_submission_time:最后一次提交题目日期
两张表分开查看对于运营同学太困难了,请帮助他通过用户ID将两张表合并输出。

import pandas as pdpd.set_option("display.width", 300)
pd.set_option("display.max_rows", None)
pd.set_option("display.max_columns", None)
nd1 = pd.read_csv("Nowcoder1.csv")
nd2 = pd.read_csv("Nowcoder2.csv")
df = pd.merge(nd1, nd2, on="Nowcoder_ID")print(df)

4.现有一个Nowcoder1.csv文件,记录了牛客网的部分用户的个人信息,包含如下字段(字段与字段之间以逗号间隔):
Nowcoder_ID:用户ID
Name:用户名
Level:等级
Achievement_value:成就值
Num_of_exercise:刷题量
Graduate_year:毕业年份
Language:常用语言
另外一个Nowcoder2.csv文件记录了用户的活跃情况,包含如下字段(字段与字段之间以逗号间隔):
Nowcoder_ID:用户ID
Continuous_check_in_days:最近连续签到天数
Number_of_submissions:提交代码次数
Last_submission_time:最后一次提交题目日期
如果你想要的信息各自在两个csv文件中,你该怎么输出?同时输出用户的名字、刷题量和代码提交次数。

import pandas as pdpd.set_option("display.width", 300)
pd.set_option("display.max_rows", None)
pd.set_option("display.max_columns", None)
nd1 = pd.read_csv("Nowcoder1.csv")
nd2 = pd.read_csv("Nowcoder2.csv")
df = pd.merge(nd1, nd2, on="Nowcoder_ID")print(df[["Name", "Num_of_exercise", "Number_of_submissions"]])

5.现有某店铺会员消费情况sales.csv。包含以下字段:
user_id:会员编号;
recency:最近一次消费距离当天的天数;
frequency:一段时间内消费的次数;
monetary:一段时间内消费的总金额。
请你统计消费金额最多的前3名用户。

import pandas as pdsales = pd.read_csv("sales.csv")print(sales.sort_values(by="monetary", ascending=False).reset_index(drop=True).head(3))

6.现有一个Nowcoder.csv文件,记录了牛客网的部分用户的个人信息,包含如下字段(字段与字段之间以逗号间隔):
Nowcoder_ID:用户ID
Name:用户名
Level:等级
Achievement_value:成就值
Num_of_exercise:刷题量
Graduate_year:毕业年份
Language:常用语言
牛牛在查看这些数据的时候,等级都是混乱的,他想按照1-7级的递增序查看这些用户数据,你能帮他输出一下吗?

import pandas as pdpd.set_option("display.width", 300) 
pd.set_option("display.max_rows", None)  
pd.set_option("display.max_columns", None)nd = pd.read_csv("Nowcoder.csv")print(nd.sort_values(by="Level"))

7.现有某店铺会员消费情况sales.csv。包含以下字段:
user_id:会员编号;
recency:最近一次消费距离当天的天数;
frequency:一段时间内消费的次数;
monetary:一段时间内消费的总金额。
请你分别对每个用户的每个消费特征进行评分。

import pandas as pddata = pd.read_csv("sales.csv")data["R_Quartile"] = pd.qcut(data["recency"], [0, 0.25, 0.5, 0.75, 1], ["4", "3", "2", "1"]
).astype("int")
data["F_Quartile"] = pd.qcut(data["frequency"], [0, 0.25, 0.5, 0.75, 1], ["1", "2", "3", "4"]
).astype("int")
data["M_Quartile"] = pd.qcut(data["monetary"], [0, 0.25, 0.5, 0.75, 1], ["1", "2", "3", "4"]
).astype("int")print(data.head())

8.现有某店铺会员消费情况sales.csv。包含以下字段:
user_id:会员编号;
recency:最近一次消费距离当天的天数;
frequency:一段时间内消费的次数;
monetary:一段时间内消费的总金额。
请你统计最有价值的用户中消费金额最多的前5名用户。

import pandas as pddata = pd.read_csv("sales.csv")R = pd.qcut(data["recency"], [0, 0.25, 0.5, 0.75, 1.0], ["4", "3", "2", "1"]).astype(str)
F = pd.qcut(data["frequency"], [0, 0.25, 0.5, 0.75, 1.0], ["1", "2", "3", "4"]).astype(str)
M = pd.qcut(data["monetary"], [0, 0.25, 0.5, 0.75, 1.0], ["1", "2", "3", "4"]).astype(str)
data["RFMClass"] = R + F + Mprint(data.head())
print(data[data["RFMClass"] == "444"].sort_values("monetary", ascending=False))

相关文章:

牛客网Python篇数据分析习题(六)

1.某公司计划举办一场运动会,现有运动会项目数据集items.csv。 包含以下字段: item_id:项目编号; item_name:项目名称; location:比赛场地。 有员工报名情况数据集signup.csv。包含以下字段: employee_id&a…...

Ansible的安装及部署

目录 一、Ansible对于企业运维的重大意义 二、Ansible的安装 三、构建Ansible清单 1.直接书写受管主机名或ip,每行一个 2.设定受管主机的组[组名称] 四、Ansible配置文件参数详解 1、配置文件的分类与优先级 2.配置新用户的Ansible配置 3.生成免密认证 本章…...

链表题目总结 -- 递归

目录一. 递归反转整个链表1. 思路简述2. 代码3. 总结二. 反转链表前 N 个节点1. 思路简述2. 代码3. 总结三、反转链表的一部分1. 思路简述2. 代码3.总结四、从节点M开始反转后面的链表1. 思路简述2. 代码3.总结一. 递归反转整个链表 题目链接:https://leetcode.cn/…...

重写-linux内存管理-伙伴分配器(一)

文章目录一、伙伴系统的结构二、初始化三、分配内存3.1 prepare_alloc_pages3.2 get_page_from_freelist3.2.1 zone_watermark_fast3.2.2 zone_watermark_ok3.2.3 rmqueue3.2.3.1 rmqueue_pcplist3.2.3.2 __rmqueue3.2.3.2.1 __rmqueue_smallest3.2.3.2.2 __rmqueue_fallback3.…...

为什么要用springboot进行开发呢?

文章目录前言1、那么Springboot是怎么实现自动配置的1.1 启动类1.2 SpringBootApplication1.3 Configuration1.4 ComponentScan1.5 EnableAutoConfiguration1.6 两个重要注解1.7 AutoConfigurationPackage注解1.8 Import(AutoConfigurationImportSelector.class)注解1.9自动配置…...

设备树信息解析相关函数

一。可以通过三种不同的方式解析设备树节点: 1.根据设备树节点的名字解析设备树节点 struct device_node *of_find_node_by_name(struct device_node *from, const char *name); 参数: from:当前节点父节点首地址 name:设备树节点名字 …...

LeetCode-1124. 表现良好的最长时间段【哈希表,前缀和,单调栈】

LeetCode-1124. 表现良好的最长时间段【哈希表,前缀和,单调栈】题目描述:解题思路一:查字典。cur是当前的前缀和(劳累与不劳累天数之差),向前遍历。有两种情况。情况一,若cur大于0则是[0,i]的劳累与不劳累天…...

vue-router路由配置

介绍:路由配置主要是用来确定网站访问路径对应哪个文件代码显示的,这里主要描述路由的配置、子路由、动态路由(运行中添加删除路由) 1、npm添加 npm install vue-router // 执行完后会自动在package.json中添加 "vue-router…...

中国计算机设计大赛来啦!用飞桨驱动智慧救援机器狗

‍‍中国大学生计算机设计大赛是我国高校面向本科生最早的赛事之一,自2008年开赛至今,一直由教育部高校与计算机相关教指委等或独立或联合主办。大赛的目的是以赛促学、以赛促教、以赛促创,为国家培养德智体美劳全面发展的创新型、复合型、应…...

嘉定区2022年高新技术企业认定资助申报指南

各镇人民政府,街道办事处,嘉定工业区、菊园新区管委会,各相关企业: 为推进实施创新驱动发展战略,加快建设具有全球影响力的科技创新中心,根据《嘉定区关于加快本区高新技术企业发展的实施方案(…...

【C++】关键字、命名空间、输入和输出、缺省参数、函数重载

C关键字(C98)命名空间产生背景命名空间定义命名空间使用输入&输出缺省参数什么叫缺省参数缺省参数分类函数重载函数重载概念C支持函数重载的原理--名字修饰C关键字(C98) C总计63个关键字,C语言32个关键字。 下面我们先看一下C有多少关键字,不对关键…...

【一道面试题】关于HashMap的一系列问题

HashMap底层数据结构在1.7与1.8的变化 1.7是基于数组链表实现的,1.8是基于数组链表红黑树实现的,链表长度达到8时会树化 使用哈希表的好处 使用hash表是为了提升查找效率,比如我现在要在数组中查找一个A对象,在这种情况下是无法…...

论文笔记: Monocular Depth Estimation: a Review of the 2022 State of the Art

中文标题:单目深度估计:回顾2022年最先进技术 本文对比了物种最近的基于深度学习的单目深度估计方法: GPLDepth(2022)[15]: Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepthAdabins(2021)[1]: Adabins:…...

Springmvc补充配置

Controller配置总结 控制器通常通过接口定义或注解定义两种方法实现 在用接口定义写控制器时&#xff0c;需要去Spring配置文件中注册请求的bean;name对应请求路径&#xff0c;class对应处理请求的类。 <bean id"/hello" class"com.demo.Controller.HelloCo…...

MySQL 的 datetime等日期和时间处理SQL函数及格式化显示

MySQL 的 datetime等日期和时间处理SQL函数及格式化显示MySQL 时间相关的SQL函数&#xff1a;MySQL的SQL DATE_FORMAT函数&#xff1a;用于以不同的格式显示日期/时间数据。DATE_FORMAT(date, format) 根据格式串 format 格式化日期或日期和时间值 date&#xff0c;返回结果串。…...

基于微信云开发的防诈反诈宣传教育答题小程序

基于微信云开发的防诈反诈宣传教育答题小程序一、前言介绍作为当代大学生&#xff0c;诈骗事件的发生屡见不鲜&#xff0c;但却未能引起大家的重视。高校以线上宣传、阵地展示为主&#xff0c;线下学习、实地送法为辅&#xff0c;从而构筑立体化反诈骗防线。在线答题考试是一种…...

Map和Set

Map和set是一种专门用来进行搜索的容器或者数据结构&#xff0c;其搜索的效率与其具体的实例化子类有关。数据的一般查找方式有两种&#xff1a;直接遍历和二分查找。但这两种查找方式都有很大的局限性&#xff0c;也不便于对数据进行增删查改等操作。对于这一类数据的查找&…...

【位运算问题】Leetcode 136、137、260问题详解及代码实现

Halo&#xff0c;这里是Ppeua。平时主要更新C语言&#xff0c;C&#xff0c;数据结构算法......感兴趣就关注我吧&#xff01;你定不会失望。 &#x1f308;个人主页&#xff1a;主页链接 &#x1f308;算法专栏&#xff1a;专栏链接 我会一直往里填充内容哒&#xff01; &…...

同花顺2023届春招内推

同花顺2023届春招开始啦&#xff01; 同花顺是国内首家上市的互联网金融信息服务平台&#xff0c;如果你对互联网金融感兴趣&#xff0c;如果你有志向在人工智能方向发挥所长&#xff0c;如果你也是一个激情澎湃的小伙伴&#xff0c;欢迎加入我们&#xff01;岗位类别&#xf…...

深入Kafka核心设计与实践原理读书笔记第三章消费者

消费者 消费者与消费组 消费者Consumer负责定于kafka中的主题Topic&#xff0c;并且从订阅的主题上拉取消息。与其他消息中间件不同的在于它有一个消费组。每个消费者对应一个消费组&#xff0c;当消息发布到主题后&#xff0c;只会被投递给订阅它的消费组的一个消费者。 如…...

CTF show Web 红包题第六弹

提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框&#xff0c;很难让人不联想到SQL注入&#xff0c;但提示都说了不是SQL注入&#xff0c;所以就不往这方面想了 ​ 先查看一下网页源码&#xff0c;发现一段JavaScript代码&#xff0c;有一个关键类ctfs…...

脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)

一、数据处理与分析实战 &#xff08;一&#xff09;实时滤波与参数调整 基础滤波操作 60Hz 工频滤波&#xff1a;勾选界面右侧 “60Hz” 复选框&#xff0c;可有效抑制电网干扰&#xff08;适用于北美地区&#xff0c;欧洲用户可调整为 50Hz&#xff09;。 平滑处理&…...

Xshell远程连接Kali(默认 | 私钥)Note版

前言:xshell远程连接&#xff0c;私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个生活电费的缴纳和查询小程序

一、项目初始化与配置 1. 创建项目 ohpm init harmony/utility-payment-app 2. 配置权限 // module.json5 {"requestPermissions": [{"name": "ohos.permission.INTERNET"},{"name": "ohos.permission.GET_NETWORK_INFO"…...

【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)

骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术&#xff0c;它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton)&#xff1a;由层级结构的骨头组成&#xff0c;类似于人体骨骼蒙皮 (Mesh Skinning)&#xff1a;将模型网格顶点绑定到骨骼上&#xff0c;使骨骼移动…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作

一、上下文切换 即使单核CPU也可以进行多线程执行代码&#xff0c;CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短&#xff0c;所以CPU会不断地切换线程执行&#xff0c;从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...

Swagger和OpenApi的前世今生

Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章&#xff0c;二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑&#xff1a; &#x1f504; 一、起源与初创期&#xff1a;Swagger的诞生&#xff08;2010-2014&#xff09; 核心…...

力扣-35.搜索插入位置

题目描述 给定一个排序数组和一个目标值&#xff0c;在数组中找到目标值&#xff0c;并返回其索引。如果目标值不存在于数组中&#xff0c;返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...

面向无人机海岸带生态系统监测的语义分割基准数据集

描述&#xff1a;海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而&#xff0c;目前该领域仍面临一个挑战&#xff0c;即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...

Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement

Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement 1. LAB环境2. L2公告策略2.1 部署Death Star2.2 访问服务2.3 部署L2公告策略2.4 服务宣告 3. 可视化 ARP 流量3.1 部署新服务3.2 准备可视化3.3 再次请求 4. 自动IPAM4.1 IPAM Pool4.2 …...