【数据统计】— 极大似然估计 MLE、最大后验估计 MAP、贝叶斯估计
【数据统计】— 极大似然估计 MLE、最大后验估计 MAP、贝叶斯估计
- 极大似然估计、最大后验概率估计(MAP),贝叶斯估计
- 极大似然估计(Maximum Likelihood Estimate,MLE)
- MLE目标
- 例子: 扔硬币
- 极大似然估计—高斯分布的参数
- 矩估计 vs LSE vs MLE
- 贝叶斯公式:
极大似然估计、最大后验概率估计(MAP),贝叶斯估计
极大似然估计(Maximum Likelihood Estimate,MLE)
- 思想:利用已知的样本结果信息,反推最具有可能(最大概率)导致这些样本结果出现的模型参数值
- 模型已定,参数未知
- 目标:概率分布函数或者似然函数最大
- 用似然函数取到最大值时的参数值作为估计值
- 概率分布模型
- 伯努利分布
- 二项分布
- 高斯分布
- 泊松分布
MLE目标
- 目标:用似然函数取到最大值时的参数值作为估计值
- 设总体分布为𝑓 𝑋 𝜃 ,𝑥1, 𝑥2, 𝑥3, ⋯,𝑥𝑁为样本。样本满足独立同分布,则他们的联合密度函数为:
- 其中,𝜃为未知参数。样本已经存在(观测),即,𝑥1, 𝑥2, 𝑥3, ⋯,𝑥𝑛是固定的。 L(𝑋|𝜃)是关于𝜃的函数,称为似然函数
- 目标:求参数𝜃,使似然函数取极大值,称为极大似然估计
- 实践中,通常对似然函数取对数(log或ln)(连乘运算变为连加运算),即对数似然函数。所以,极大似然估计问题可以写成
例子: 扔硬币
- X每次实验𝑋𝑖服从伯努利分布
- 参数为𝜽,假设为事件(正面向上)发生的概率
- 参数为𝜽,假设为事件(正面向上)发生的概率
- n次实验,共k次正面向上,采用MLE估计参数𝜽:
极大似然估计—高斯分布的参数
- 例:给定𝑥1, 𝑥2, 𝑥3, ⋯,𝑥𝑁为样本,已知样本来自于高斯分布 𝑁 𝜇, 𝜎 ,估计参数𝜇,𝜎
矩估计 vs LSE vs MLE
贝叶斯公式:
- 它将后验概率转化为基于似然函数和先验概率的计算表达式:
相关文章:

【数据统计】— 极大似然估计 MLE、最大后验估计 MAP、贝叶斯估计
【数据统计】— 极大似然估计 MLE、最大后验估计 MAP、贝叶斯估计 极大似然估计、最大后验概率估计(MAP),贝叶斯估计极大似然估计(Maximum Likelihood Estimate,MLE)MLE目标例子: 扔硬币极大似然估计—高斯分布的参数 矩估计 vs LSE vs MLE贝叶斯公式&am…...

Zookeeper学习笔记
Zookeeper入门 Zookeeper 是一个开源的分布式的,为分布式框架提供协调服务的Apache 项目。 Zookeeper工作机制 Zookeeper从设计模式角度来理解:是一个基于观察者模式设计的分布式服务管理框架,它负责存储和管理大家都关心的数据,…...

go语言切片做函数参数传递+append()函数扩容
go语言切片函数参数传递append()函数扩容 给你二叉树的根节点 root 和一个整数目标和 targetSum ,找出所有 从根节点到叶子节点 路径总和等于给定目标和的路径。 二叉树递归go代码: var ans [][]int func pathSum(root *TreeNode, targetSum int) ( [][…...

2023.04.16 学习周报
文章目录 摘要文献阅读1.题目2.摘要3.简介4.Dual-Stage Attention-Based RNN4.1 问题定义4.2 模型4.2.1 Encoder with input attention4.2.2 Decoder with temporal attention4.2.3 Training procedure 5.实验5.1 数据集5.2 参数设置和评价指标5.3 实验结果 6.结论 MDS降维算法…...

【面试】如何设计SaaS产品的数据权限?
文章目录 前言数据权限是什么?设计原则整体方案RBAC模型怎么控制数据权限?1. 数据范围权限控制2. 业务对象操作权限控制3. 业务对象字段权限控制 总结 前言 一套系统的权限可以分为两类,数据权限和功能权限,今天我们从以下几个点…...
ansible管理变量
ansible变量简介 变量用于存储值,便于重复使用,可以简化项目的创建和维护。 变量命令规则 ansible变量的名称必须以字母开头,平且只能包含字母、数字和下划线,不允许有其他特殊字符。 变量范围 全局范围:从命令行…...
一种轻量级日志采集解决方案
前言 目前各大公司生产部署很多都是采用的集群微服务的部署方式,如果让日志散落在各个主机上,查询起来会非常的困难,所以目前我了解到的都是采用的日志中心来统一收集管控日志,日志中心的实现方案大多基于ELK(即Elasticsearch、L…...

【源码】Spring Cloud Gateway 是在哪里匹配路由的?
我们知道,经过网关的业务请求会被路由到后端真实的业务服务上去,假如我们使用的是Spring Cloud Gateway,那么你知道Spring Cloud Gateway是在哪一步去匹配路由的吗? 源码之下无秘密,让我们一起从源码中寻找答案。 入…...
BAT批处理基本命令
什么是 BAT 批处理脚本语言? BAT 批处理脚本语言是 Windows 系统自带的一种脚本语言,主要用于批量处理文件、目录、注册表、系统设置等任务。使用 BAT 批处理脚本语言可以节省大量手动操作的时间和精力。 如何编写 BAT 批处理脚本? 使用记事本…...

Python数组仿射变换
文章目录 仿射变换坐标变换的逻辑scipy实现 仿射变换 前面提到的平移、旋转以及缩放,都可以通过一个变换矩阵来实现,以二维空间中的变换矩阵为例,记点的坐标向量为 ( x , y , 1 ) (x,y,1) (x,y,1),则平移矩阵可表示为 [ 1 0 T x …...
“==“和equals方法究竟有什么区别?
操作符专门用来比较两个变量的值是否相等,也就是用于比较变量所对应的内存中所存储的数值是否相同,要比较两个基本类型的数据或两个引用变量是否相等,只能用操作符。 如果一个变量指向的数据是对象类型的,那么,这时候…...

蓝桥杯15单片机--超声波模块
目录 一、超声波工作原理 二、超声波电路图 三、程序设计 1-设计思路 2-具体实现 四、程序源码 一、超声波工作原理 超声波时间差测距原理超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,途中碰到障碍…...
【学习笔记】ARC159
D - LIS 2 因为没有让你求方案数,所以还是比较好做的。 如果每一个连续段都退化成一个点,那么答案就是直接求 L I S LIS LIS。 否则,假设我们选了一些连续段把它们拼起来形成答案,显然我们有 r i 1 ≥ l i r_{i1}\ge l_i ri1…...

2023/4/16总结
图的存储 链式前向星 链式前向星和邻接表很相似,只是存储方式变成了数组。 链式前向星一般要用到一个结构体数组和一个一维数组,结构体数组edges中包括三个变量。结构体数组的大小一般由边的大小决定。 edges数组中的to代表的是某条边的终点v。w代表的是这条边的…...
【剑指offer】常用的数据增强的方法
系列文章目录 BN层详解 梯度消失和梯度爆炸 交叉熵损失函数 反向传播 1*1卷积的作用 文章目录 系列文章目录常用的数据增强的方法示例代码 常用的数据增强的方法 数据增强是指通过对原始数据进行一系列变换来生成更多的训练数据,从而提高模型的泛化能力。常用的数…...
/lib/lsb/init-functions文件解析
零、背景 在玩AppArmor的时候涉及到了/etc/init.d/apparmor(无论是sudo /etc/init.d/apparmor start还是sudo systemctl start apparmor.service),而这个文件又涉及到了另一个文件、也就是本文的主角:/lib/lsb/init-functions。 …...

【ChatGPT】ChatGPT-5 强到什么地步?
Yan-英杰的主页 悟已往之不谏 知来者之可追 C程序员,2024届电子信息研究生 目录 ChatGPT-5 强到什么地步? 技术 深度学习模型的升级 更好的预测能力 自适应学习能力 特点 语言理解能力更强 自我修正和优化 更广泛的应用领域 应用 对话系统 智能写作…...

[ARM+Linux] 基于全志h616外设开发笔记
修改用户密码 配置网络 nmcli dev wifi 命令扫描周围WIFI热点 nmcli dev wifi connect xxx password xxx 命令连接WiFi 查看ip地址的指令: ifconfig ip addr show wlan0 SSH登录 这是企业开发调试必用方式,比串口来说不用接线,前提是接入网络…...

如何实现24小时客户服务
许多企业都有着这样的愿望:在不增加客服人员的同时能实现24小时客户服务。 那么有没有什么方法可以实现这一想法呢?在想解决方案之前我们可以先来谈谈客服的作用。 客服的作用主要为以下2点: 帮助用户更快地了解产品(减轻产品的…...
查询数据库空间(mysql和oracle)
Mysql版 1、查看所有数据库容量大小 -- 查看所有数据库容量大小 SELECTtable_schema AS 数据库,sum( table_rows ) AS 记录数,sum(TRUNCATE ( data_length / 1024 / 1024, 2 )) AS 数据容量(MB),sum(TRUNCATE ( index_length / 1024 / 1024, 2 )) AS 索引容量(MB) FROMinfor…...
在软件开发中正确使用MySQL日期时间类型的深度解析
在日常软件开发场景中,时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志,到供应链系统的物流节点时间戳,时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库,其日期时间类型的…...

Xshell远程连接Kali(默认 | 私钥)Note版
前言:xshell远程连接,私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...
【Java学习笔记】Arrays类
Arrays 类 1. 导入包:import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序(自然排序和定制排序)Arrays.binarySearch()通过二分搜索法进行查找(前提:数组是…...

【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器
——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的一体化测试平台,覆盖应用全生命周期测试需求,主要提供五大核心能力: 测试类型检测目标关键指标功能体验基…...

用机器学习破解新能源领域的“弃风”难题
音乐发烧友深有体会,玩音乐的本质就是玩电网。火电声音偏暖,水电偏冷,风电偏空旷。至于太阳能发的电,则略显朦胧和单薄。 不知你是否有感觉,近两年家里的音响声音越来越冷,听起来越来越单薄? —…...
【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论
路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中(图1): mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...

FFmpeg avformat_open_input函数分析
函数内部的总体流程如下: avformat_open_input 精简后的代码如下: int avformat_open_input(AVFormatContext **ps, const char *filename,ff_const59 AVInputFormat *fmt, AVDictionary **options) {AVFormatContext *s *ps;int i, ret 0;AVDictio…...

【深度学习新浪潮】什么是credit assignment problem?
Credit Assignment Problem(信用分配问题) 是机器学习,尤其是强化学习(RL)中的核心挑战之一,指的是如何将最终的奖励或惩罚准确地分配给导致该结果的各个中间动作或决策。在序列决策任务中,智能体执行一系列动作后获得一个最终奖励,但每个动作对最终结果的贡献程度往往…...
WEB3全栈开发——面试专业技能点P7前端与链上集成
一、Next.js技术栈 ✅ 概念介绍 Next.js 是一个基于 React 的 服务端渲染(SSR)与静态网站生成(SSG) 框架,由 Vercel 开发。它简化了构建生产级 React 应用的过程,并内置了很多特性: ✅ 文件系…...

【iOS】 Block再学习
iOS Block再学习 文章目录 iOS Block再学习前言Block的三种类型__ NSGlobalBlock____ NSMallocBlock____ NSStackBlock__小结 Block底层分析Block的结构捕获自由变量捕获全局(静态)变量捕获静态变量__block修饰符forwarding指针 Block的copy时机block作为函数返回值将block赋给…...