当前位置: 首页 > news >正文

相量的加减乘除计算

相量的加减乘除计算

矢量是物理学中的术语,是指具有大小(magnitude)和方向的量。如速度、加速度、力等等就是这样的量。向量是数学中的术语,也称为欧几里得向量、几何向量、矢量。与向量对应的量叫做数量,在物理学中称为标量,数量只有大小,没有方向。

相量是电子工程学中用以表示正弦量大小和相位的矢量。它仅用来表示具有正弦波的电压和电流,将电压电流用一个复数形式表示,以方便计算。为了让这两个相量相乘具有功率的意义,在极坐标系中,使用电压和电流的有效值来表示相量的大小表示,相量的角度使用电压电流的初相角。不再象直角坐标系,采用幅值和正弦函数的乘积来表示。

由于电压和电流同频,我们将电压相量和电流相量画在同一个复平面中(极坐标系),称为相量图。

在上图中:

相量U = a + jb = U * [cos(α)+ jsin(α)]

相量I = c + jd = I * [cos(β)+ jsin(β)]

相量U1 = a + jb = U1 * [cos(α)+ jsin(α)]

相量U2 = c + jd = U2 * [cos(β)+ jsin(β)]

    采用有效值表示相量的大小,是因为考虑到功率计算,如果继续使用幅值表示相量的大小,会导致电压电流相量的乘积就失去了功率的意义,因此,这里采用有效值表示相量的大小。采用初相角表示方向,是因为电压电流相量同频。

相量加法

相量U1 + 相量U2 = U1 * [cos(α)+ jsin(α)] + U2 * [cos(β)+ jsin(β)]

= [U1 * cos(α)+ U2 * cos(β)] + j[U1 * sin(α)+ U2 * sin(β)]

相量和模的平方:

[U1 * cos(α)+ U2 * cos(β)]* [U1 * cos(α)+ U2 * cos(β)]+ [U1 * sin(α)+ U2 * sin(β)]* [U1 * sin(α)+ U2 * sin(β)]

= U1*U1 + U2*U2 + 2U1*U2*[cos(α) cos(β) + sin(α) sin(β)]

=U1*U1 + U2*U2 + 2U1*U2*cos(α-β)

相量和的角度:

 arctg{[U1 * sin(α)+ U2 * sin(β)] /[U1 * cos(α)+ U2 * cos(β)]}

相量加法结论:相量的实部和实部相加,虚部和虚部相加

相量减法

相量U1 - 相量U2 = U1 * [cos(α)+ jsin(α)] - U2 * [cos(β)+ jsin(β)]

= [U1 * cos(α)- U2 * cos(β)] + j[U1 * sin(α)- U2 * sin(β)]

相量和模的平方:

[U1 * cos(α)- U2 * cos(β)]* [U1 * cos(α)- U2 * cos(β)]+ [U1 * sin(α)- U2 * sin(β)]* [U1 * sin(α)- U2 * sin(β)]

= U1*U1 + U2*U2 - 2U1*U2*[cos(α) cos(β) + sin(α) sin(β)]

=U1*U1 + U2*U2 - 2U1*U2*cos(α-β)

相量和的角度:

 arctg{[U1 * sin(α)- U2 * sin(β)] /[U1 * cos(α)- U2 * cos(β)]}

相量减法结论:相量的实部和实部相减,虚部和虚部相减

相量乘法

相量U和相量I的乘积=[U*cos(α)+jU*sin(α)] * [I*cos(β)+jI*sin(β)]

=UI{[cos(α)cos(β)-sin(α)sin(β)] + j [cos(α) sin(β)+sin(α) cos(β)]}

=UI[cos(α+β) + jsin(α+β)]

相量乘法结论:“积的模”等于相量的模相乘,“积的角度”等于相量的角度相加。

有功功率计算

有功功率功是“电流的有功分量”乘以“电压相量的模”,因此,有功功率为UIcos(α-β)。

相量除法

相量U和相量I的商=[U*cos(α)+jU*sin(α)] / [I*cos(β)+jI*sin(β)]

=(U/I)* [cos(α)+jsin(α)] / [cos(β)+jsin(β)]

=(U/I)* [cos(α)+jsin(α)] *[cos(β)-jsin(β)]/ {[cos(β)+jsin(β)]* [cos(β)-jsin(β)]}

=(U/I)* [cos(α)+jsin(α)] *[cos(β)-jsin(β)]

=(U/I)* [cos(α)cos(β)+ sin(α) sin(β)]+j[sin(α)cos(β)-cos(α)sin(β)]

=(U/I)* [cos(α-β)+jsin(α-β)]

相量除法结论:“商的模”等于相量的模相除,“商的角度”等于相量的角度相减。

复阻抗的相位角φ,阻抗是复阻抗的模,容抗为1/ωC,感抗为ωL

电压相量为U[cos(α)+jsin(α)]

复阻抗是一个复数,为M[cos(φ)+jsin(φ)]

电流相量= U[cos(α)+jsin(α)] / M[cos(φ)+jsin(φ)]

=(U/M)* [cos(α)+jsin(α)] / [cos(φ)+jsin(φ)]

=(U/M)* [cos(α)+jsin(α)] * [cos(φ)-jsin(φ)]

=(U/M)*{[cos(α)cos(φ) + sin(α)sin(φ)]+j[sin(α)cos(φ)- cos(α)sin(φ) }

=(U/M)*{[cos(α-φ)]+j[sin(α-φ) }

电流初相角为 (α-φ),即电流初相角等于电压初相角与复阻抗角度的差

因此,当φ> O时,电流初相角小于电压初相角,即电流滞后电压;当φ< O时,电流初相角大于电压初相角,即电流超前电压。

电压电流相位差ψ=α-(α-φ)= φ,即电压电流相位差等于复阻抗的角度值

因此,功率因素等于阻抗角度的余弦值,等于电压电流相位差的余弦值。知道了功率因素,就等于告诉了复阻抗的角度值

很多学习《电路分析》的人,不知道“视在功率等于电压相量乘以电流相量的共轭”。记得上课时,教授给出他的证明过程,我疑惑不已,以为他在凑答案。估计很多人讲不清楚其中的原因。

证明:视在功率等于电压相量乘以电流相量的共轭

已知:电压相量为(U, α), 复阻抗为M[cos(φ)+jsin(φ)]

经过计算:电流初相角为β=(α-φ),I=U/M,得到φ=α-β

根据视在功率等于电压相量的平方除法以复阻抗,得到:

[U*cos(α)+jU*sin(α)] * [U*cos(α)+jU*sin(α)] / M*cos(φ)+jM*sin(φ)]

=U*U*[cos(2α)+ jsin(2α)] / [M*cos(φ)+jM*sin(φ)]

=(U*U/M)* [cos(2α)+ jsin(2α)]* [cos(φ) - jsin(φ)]

=(U*U/M)* [cos(2α)+ jsin(2α)] * [cos(-φ) + jsin(-φ)]

=(U*U/M)* [cos(2α-φ)+ jsin(2α-φ)]

=(U*I)* {cos[2α-(α-β)]+ jsin[2α-(α-β)]}

=(U*I)* [cos(α-β)+ jsin(α-β)]

实部为UIcos(α-β),表示有功功率,虚部为UI sin(α-β),表示无功功率。

因此,视在功率等于电压相量乘以电流相量的共轭

基尔霍夫第一定律又称基尔霍夫电流定律,简记为KCL,其物理背景是电荷守恒公理。假设进入某节点的电流为正值,离开这节点的电流为负值,则所有涉及这节点的电流的代数和等于零,因此又称为节点电流定律。

基尔霍夫第二定律又称基尔霍夫电压定律,简记为KVL,其物理背景是能量守恒。沿着闭合回路所有元件两端的电势差(电压)的代数和等于零,因此又称为回路电压定律。

相关文章:

相量的加减乘除计算

相量的加减乘除计算 矢量是物理学中的术语&#xff0c;是指具有大小&#xff08;magnitude&#xff09;和方向的量。如速度、加速度、力等等就是这样的量。向量是数学中的术语&#xff0c;也称为欧几里得向量、几何向量、矢量。与向量对应的量叫做数量&#xff0c;在物理学中称…...

JavaScript 代码整洁之道

文章目录 概述篇变量篇函数篇注释篇异常处理篇复杂判断函数篇重构篇代码风格常量大写先声明后调用注释 参考资料 概述篇 书写能让人读懂的代码使用英语编写代码团队协作 制定通用的规则&#xff0c;依靠工具让团队的代码风格保持统一&#xff0c;要让代码看起来是由一个人编写…...

socket 及 字节序转换(嵌入式学习)

socket 及 字节序转换 socket简介Socket为什么需要Socket&#xff1f;socket类型Socket通信模型 字节序主机字节序到网络字节序网络字节序到主机字节序IP地址转换 socket简介 1、1982 - Berkeley Software Distributions 操作系统引入了socket作为本地进程之间通信的接口 2、1…...

Java之~ Aop自定义注解日志

大纲步骤&#xff1a; 一&#xff0c;创建需要记录的日志表&#xff0c;创建基础方法。&#xff08;省略&#xff09; 二&#xff0c;在需要加记录日志的方法上加Aop注解1&#xff0c;创建一个注解类&#xff0c;Aop中定义一个注解import java.lang.annotation.*; /*** http 请…...

编译原理个人作业--第四章

构造FIRST和FOLLOW的大白话网站 第四章 1 考虑文法 G 1 G_1 G1​: S → a ∣ ∧ ∣ ( T ) T → T , S ∣ S S \rightarrow a|\land|(T) \\ T\rightarrow T,S|S S→a∣∧∣(T)T→T,S∣S 先复习左递归如何消除 原书p69页 类似于 P → P a ∣ b P\rightarrow Pa|b P→Pa∣b的…...

学习笔记:数据库简介

数据库是一系列可以方便的访问和修改的数据的集合。 所有数据库管理系统的主要工作都是可靠的存储数据并使其对用户可用。 目前最常见的数据库模型主要是两种&#xff0c;即关系型数据库和非关系型数据库。 一、按数据的组织方式 数据从组织的角度上&#xff0c;主要分为结…...

day18_集合

今日内容 零、 复习昨日 一、集合框架体系 二、Collection 三、泛型 四、迭代 五、List 六、ArrayList 七、LinkedList 零、 复习昨日 晨考 一、集合框架体系 数组: 是一个容器,用来存放数据的 定长只能存储同一种数据类型的数据int[] 可以存储int值,Student[] 可以存储引用类型…...

Go面试必会基础题

文章目录 1.下面代码有什么错误&#xff1f;2.下面代码有什么问题&#xff1f;3.下面代码输出什么&#xff1f;4.下面这段代码输出什么&#xff1f; 1.下面代码有什么错误&#xff1f; func main() {one : 0one : 1 }参考答案及解析&#xff1a;变量重复声明。不能在单独的声…...

发送封包协议实现XXZ批量秒分解装备

通过发送封包&#xff0c;我们可以让一些反复的枯燥的行为变的简单&#xff0c;高效。 比如XXZ的萃取装备&#xff0c;我们可以一瞬间萃取大量的装备&#xff0c;而省去读条的过程。 我们来萃取一下看看效果 手动萃取是有读条的&#xff0c;那么如果很多装备的话&#xff0c;…...

Spring学习——Nginx

Nginx概述 Nginx介绍 Nginx是一款轻量级的web 服务器/反向代理服务器及电子邮件&#xff08;IMAP/POP3&#xff09;代理服务器。其特点是占有内存少&#xff0c;并发能力强&#xff0c;事实上nginx的并发能力在同类型的网页服务器中表现较好&#xff0c;中国大陆使用nginx的网…...

记录 vue-cli 安装过程

1. VueCli CLI 是 Commond-Line Interface 的缩写 如果开发大型项目&#xff0c;肯定需要考虑代码目录结构、项目结构和部署、热加载、代码单元测试等事情&#xff0c;那么你必然需要使用 VueCLI&#xff0c;使用 VueCLI 可以快速搭建 vue 开发环境以及对应的 webpack 配置。 …...

含氢微网优化调度模型matlab

目录 1 主要内容 模型示意图 目标函数 2 部分程序 3 程序结果 4 下载链接 1 主要内容 最近咨询含氢微网优化调度模型的同学较多&#xff0c;本次就分享一个高质量的源码资源。该程序方法复现《Simulation of design and operation of hydrogen energy utilization syste…...

【springcloud开发教程】路由网关——zuul

官方资料&#xff1a;https://github.com/Netflix/zuul/ 什么是Zuul? Zuul包含了两个主要的功能&#xff1a;路由和过滤 路由功能将外部请求转发到具体的微服务实例上&#xff0c;是实现外部访问统一入口的基础&#xff0c;而过滤器功能则负责对请求的处理过程进行干预&#…...

DF竞赛平台携手嬴彻科技与清华大学智能产业研究院,助力自动驾驶挑战赛圆满落幕!

由DataFountain竞赛平台&#xff08;简称DF平台&#xff09;提供办赛支持的「首届“嬴彻-清华AIR杯”自动驾驶挑战赛&#xff1a;决策规划算法」已圆满落幕。作为一场前沿性自动驾驶类比赛&#xff0c;本次大赛立足“高速道路”和“城市道路”两大真实场景&#xff0c;选择“半…...

234:vue+openlayers 加载本地shp数据,在map上显示图形

第234个 点击查看专栏目录 本示例的目的是介绍演示如何在vue+openlayers中利用shapefile读取本地的shp数据,并在地图上显示图形。 直接复制下面的 vue+openlayers源代码,操作2分钟即可运行实现效果 文章目录 示例效果安装引用配置方式示例源代码(共143行)相关API参考:专栏…...

网络模型-网络体系结构(OSI、TCP/IP)

网络模型&#xff08;网络体系结构&#xff09; 网络模型网络的体系结构OSI模型TCP/IP模型OSI和TCP/IP模型对应关系图 常见网络协议 网络模型 网络的体系结构 1、网络采用分而治之的方法设计&#xff0c;将网络的功能划分为不同的模块&#xff0c;以分层的形式有机组合在一起…...

园区智慧导览地图软件,智慧工厂导航定位怎么解决方案的

智慧工厂导航定位怎么解决方案的地图新基建是行业的核心数字基础需求之一&#xff0c;行业内中已构建了较为完整的城市级地理信息系统。园区管理涉及众多方面&#xff0c;因此园区的智慧信息化建设至关重要&#xff0c;需求越来越广泛。在智慧园区中&#xff0c;基于园区的电子…...

Redis高可用之3种集群方案对比

Redis集群方案使用建议&#xff1a; Redis cluster&#xff1a;除非是1000个节点以上的超大规模集群&#xff0c;优先考虑使用Redis clustercodis&#xff1a;旧项目如果仍在使用codis&#xff0c;可继续使用&#xff0c;但也推荐迁移到Redis clustertwemproxy&#xff1a;不建…...

java 线程唤醒于阻塞的常用方法

1.分类描述 1.sleep() 休眠2.suspend() 暂停和 resume() 继续3.yield() 让步 就是我放弃本次执行&#xff0c;但继续排队&#xff0c;下一次有机会在执行。 4.wait() 和 notify() notifyAll() 注&#xff1a;这两个方法&#xff0c;属于Object类&#xff0c;而不属于Thread…...

面包多面包多面包多面包多面包多面包多

1.背景 1.摘要 本文是针对智慧政务中的文本数据挖掘应用的研究。通过建立基于三层网络结构的fastText文本分类模型&#xff0c;聚类量化模型&#xff0c;熵权评估模型解决了群众留言分类&#xff0c;热点问题挖掘&#xff0c;答复意见评价等问题。 针对群众留言分类问题&#…...

多模态2025:技术路线“神仙打架”,视频生成冲上云霄

文&#xff5c;魏琳华 编&#xff5c;王一粟 一场大会&#xff0c;聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中&#xff0c;汇集了学界、创业公司和大厂等三方的热门选手&#xff0c;关于多模态的集中讨论达到了前所未有的热度。其中&#xff0c;…...

工业安全零事故的智能守护者:一体化AI智能安防平台

前言&#xff1a; 通过AI视觉技术&#xff0c;为船厂提供全面的安全监控解决方案&#xff0c;涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面&#xff0c;能够实现对应负责人反馈机制&#xff0c;并最终实现数据的统计报表。提升船厂…...

Java 8 Stream API 入门到实践详解

一、告别 for 循环&#xff01; 传统痛点&#xff1a; Java 8 之前&#xff0c;集合操作离不开冗长的 for 循环和匿名类。例如&#xff0c;过滤列表中的偶数&#xff1a; List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...

边缘计算医疗风险自查APP开发方案

核心目标:在便携设备(智能手表/家用检测仪)部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。 一、技术架构设计 #mermaid-svg-iuNaeeLK2YoFKfao {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...

Cesium1.95中高性能加载1500个点

一、基本方式&#xff1a; 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...

python/java环境配置

环境变量放一起 python&#xff1a; 1.首先下载Python Python下载地址&#xff1a;Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个&#xff0c;然后自定义&#xff0c;全选 可以把前4个选上 3.环境配置 1&#xff09;搜高级系统设置 2…...

LeetCode - 394. 字符串解码

题目 394. 字符串解码 - 力扣&#xff08;LeetCode&#xff09; 思路 使用两个栈&#xff1a;一个存储重复次数&#xff0c;一个存储字符串 遍历输入字符串&#xff1a; 数字处理&#xff1a;遇到数字时&#xff0c;累积计算重复次数左括号处理&#xff1a;保存当前状态&a…...

django filter 统计数量 按属性去重

在Django中&#xff0c;如果你想要根据某个属性对查询集进行去重并统计数量&#xff0c;你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求&#xff1a; 方法1&#xff1a;使用annotate()和Count 假设你有一个模型Item&#xff0c;并且你想…...

#Uniapp篇:chrome调试unapp适配

chrome调试设备----使用Android模拟机开发调试移动端页面 Chrome://inspect/#devices MuMu模拟器Edge浏览器&#xff1a;Android原生APP嵌入的H5页面元素定位 chrome://inspect/#devices uniapp单位适配 根路径下 postcss.config.js 需要装这些插件 “postcss”: “^8.5.…...

【Go语言基础【12】】指针:声明、取地址、解引用

文章目录 零、概述&#xff1a;指针 vs. 引用&#xff08;类比其他语言&#xff09;一、指针基础概念二、指针声明与初始化三、指针操作符1. &&#xff1a;取地址&#xff08;拿到内存地址&#xff09;2. *&#xff1a;解引用&#xff08;拿到值&#xff09; 四、空指针&am…...