当前位置: 首页 > news >正文

研究LLMs之前,不如先读读这五篇论文!

目标:了解 LMM 背后的主要思想

▪️ Neural Machine Translation by Jointly Learning to Align and Translate
▪️ Attention Is All You Need
▪️ BERT
▪️ Improving Language Understanding by Generative Pre-Training
▪️ BART

在这里插入图片描述

  1. Neural Machine Translation by Jointly Learning to Align and Translate

论文链接:https://arxiv.org/pdf/1409.0473.pdf

提出Encoder-Decoder的经典seq2seq结构,对文本生成,文本摘要、翻译等生成式人物起到重要影响

  1. Attention Is All You Need

论文链接:https://arxiv.org/pdf/1706.03762.pdf

在这里插入图片描述
前两年火爆的论文:transformer

  1. BERT: Pre-training of Deep Bidirectional Transformers for Language

    预训练模型经典之作

论文链接:https://arxiv.org/pdf/1810.04805.pdf

  1. Improving Language Understanding By Generative Pre-Training

在这里插入图片描述
本论文探索一种基于半监督解决语言理解任务方法,使用无监督预训练和监督微调。目标是从大量未标注语料库学习一种普遍的表征,不要求目标任务与未标注语料库在相同领域。

论文链接:https://gwern.net/doc/www/s3-us-west-2.amazonaws.com/d73fdc5ffa8627bce44dcda2fc012da638ffb158.pdf

  1. BART: Denoising Sequence-to-Sequence Pre-training for NaturalLanguage Generation, Translation, and Comprehension

BART:Bidirectional and Auto-Regressive Transformers ,字面意思为双向自回归Transformer,依旧是基于Transformer改造出的模型。在GPT分走了Transformer的解码器部分,BERT分走了Transformer的编码器部分之后,BART终于将“老父亲”的所有“家产”一起打包带走。

论文链接:https://arxiv.org/pdf/1910.13461.pdf

相关文章:

研究LLMs之前,不如先读读这五篇论文!

目标:了解 LMM 背后的主要思想 ▪️ Neural Machine Translation by Jointly Learning to Align and Translate ▪️ Attention Is All You Need ▪️ BERT ▪️ Improving Language Understanding by Generative Pre-Training ▪️ BART Neural Machine Translati…...

认识BASH这个Shell

文章目录 认识BASH这个Shell硬件、内核与shell为什么要学命令行模式的Shell?Bash Shell的功能命令与文件补全(TAB)命令别名设置(alias)历史命令(history)任务管理、前台、后台控制(jobs,fg,bg)通配符程序化脚本 查询命令是否为Bash shell 的内…...

用SQL语句操作Oracle数据库——数据更新

数据更新 数据库中的数据更新操作有3种:1)向表中添加若干行数据(增);2)删除表中的若干行数据(删);3)修改表中的数据(改)。对于这3种操作&#xf…...

二维码+互联网云技术在中建二局施工项目管理中的应用实践

中建二局(全称:中国建筑第二工程局有限公司)是世界500强企业—中国建筑股份有限公司的全资子公司,是集房建、基建、核电、火电、风电等多种建设和投资相融合的、国内最具综合实力的大型国有企业集团公司。中建二局具有土木建筑、设…...

扩散模型原理记录

1 扩散模型原理记录 参考资料: [1]【54、Probabilistic Diffusion Model概率扩散模型理论与完整PyTorch代码详细解读】 https://www.bilibili.com/video/BV1b541197HX/?share_sourcecopy_web&vd_source7771b17ae75bc5131361e81a50a0c871 [2] https://t.bili…...

Metasploit高级技术【第九章】

预计更新第一章 Metasploit的使用和配置 1.1 安装和配置Metasploit 1.2 Metasploit的基础命令和选项 1.3 高级选项和配置 第二章 渗透测试的漏洞利用和攻击方法 1.1 渗透测试中常见的漏洞类型和利用方法 1.2 Metasploit的漏洞利用模块和选项 1.3 模块编写和自定义 第三章 Met…...

RK3568平台开发系列讲解(调试篇)IS_ERR函数的使用

🚀返回专栏总目录 文章目录 一、IS_ERR函数用法二、IS_ERR函数三、内核错误码沉淀、分享、成长,让自己和他人都能有所收获!😄 📢本篇将介绍 IS_ERR 函数的使用。 一、IS_ERR函数用法 先看下用法: 二、IS_ERR函数 对于任何一个指针来说,必然存在三种情况: 一种是合…...

TouchGFX界面开发 | TouchGFX软件安装

TouchGFX软件安装 TouchGFX和STemWin类似,都是一个GUI框架,可以方便的在STM32 Cortex-M4 以及更高级别的STM32芯片上创建GUI应用程序。 本文中的TouchGFX软件安装,是基于已经安装有STM32CubeMX Keil MDK-ARM开发环境的情况下进行的&#x…...

使用 IDEA 远程 Debug 调试

背景 有时候我们需要进行远程的debug,本文研究如何进行远程debug,以及使用 IDEA 远程debug的过程中的细节。看完可以解决你的一些疑惑。 配置 远程debug的服务,以springboot微服务为例。首先,启动springboot需要加上特定的参数。…...

红黑树和平衡二叉树的优缺点及应用场景

红黑树和平衡二叉树都是为了解决二叉搜索树的缺陷而提出的自平衡二叉树结构。它们的优缺点和应用场景如下: 红黑树: 优点: 时间复杂度为O(logN),可以快速查找、插入和删除。 红黑树具有良好的平衡性,树的高度保持较小,因此查找效率较高。 缺点: 实现比较复杂,需要遵守红黑树的…...

软文推广:真实有效提升软文排名与收录的三大方法!

软文是一种具有良好传播效果的文体,可以通过在搜索引擎中排名靠前的方式,为品牌或企业带来更多曝光。但是,如何让软文在搜索引擎中得到更好的收录和排名呢?在本文中,我们将讨论如何提升软文的收录和排名,以…...

SElinux的介绍及配置

SELinux(Security-Enhanced Linux) 是美国国家安全局(NSA)对于强制访问控制的实现,是 Linux历史上最杰出的新安全子系统 SELinux安全增强型Linux系统,是Linux内核子系统,旨在最大限度的减少服务进程对文件、端口等资源…...

vscode-python环境配置

vscode-python环境配置 1、环境基础 下载vscode找到python插件并安装安装python环境并配置环境变量 2、选择python解释器 尝试执行了一下,直接运行py文件,会使用c的调试工具,需要告诉vscode哪些是python Ctrl Shift P打开命令面板 执行…...

问卷调查样本量的确定方法

我们在进行问卷调查的时候,问卷的收集数量是重要的流程之一。问卷数量取决于几个因素,包括研究的目的和研究的类型。接下来,我们就聊一聊怎么确定所需的调查问卷数量。 1、确定研究目标。 确定所需问卷数量的第一步是明确研究目标。这一步是…...

ios客户端学习笔记(三):学习Swift的设计模式

设计模式是指在软件开发中常用的一些解决问题的方法和思想,它可以帮助你更好地组织代码和提高代码的可维护性。你需要学习常见的设计模式,如MVC、MVVM、单例模式、工厂模式等,在开发应用程序时应用它们。 当你学习常见的设计模式时&#xff…...

406. 根据身高重建队列

假设有打乱顺序的一群人站成一个队列,数组 people 表示队列中一些人的属性(不一定按顺序)。每个 people[i] [hi, ki] 表示第 i 个人的身高为 hi ,前面 正好 有 ki 个身高大于或等于 hi 的人。 请你重新构造并返回输入数组 peopl…...

ESP32使用ESP-NOW协议实现一对多通信和MAC地址存储

目录 介绍ESP-NOW 协议概述在 ESP32 上配置 ESP-NOW使用 ESP-NOW 进行一对多通信在 ESP32 上存储发件人的 MAC 地址代码结论 介绍 ESP32 是一款功能强大的 Wi-Fi 和蓝牙双模模块,可用于使用 ESP-NOW 协议实现低功耗、高效率的一对多通信。本文将介绍如何使用ESP-NO…...

Qt 学生信息数据库管理

1 添加样式表 我们采用了样式表 通过添加Qt resources文件 添加前缀 添加文件,将我们的图标进行添加 2 拖动部件 用到的部件 Label 标签Pushbutton 按钮table view 视图LineEdit 输入框 3 程序编写 1 配置sql环境 在 pro文件中 添加 连接数据库跟访问数据…...

相量的加减乘除计算

相量的加减乘除计算 矢量是物理学中的术语,是指具有大小(magnitude)和方向的量。如速度、加速度、力等等就是这样的量。向量是数学中的术语,也称为欧几里得向量、几何向量、矢量。与向量对应的量叫做数量,在物理学中称…...

JavaScript 代码整洁之道

文章目录 概述篇变量篇函数篇注释篇异常处理篇复杂判断函数篇重构篇代码风格常量大写先声明后调用注释 参考资料 概述篇 书写能让人读懂的代码使用英语编写代码团队协作 制定通用的规则,依靠工具让团队的代码风格保持统一,要让代码看起来是由一个人编写…...

[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解

突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 ​安全措施依赖问题​ GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...

日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻

在如今就业市场竞争日益激烈的背景下,越来越多的求职者将目光投向了日本及中日双语岗位。但是,一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧?面对生疏的日语交流环境,即便提前恶补了…...

黑马Mybatis

Mybatis 表现层&#xff1a;页面展示 业务层&#xff1a;逻辑处理 持久层&#xff1a;持久数据化保存 在这里插入图片描述 Mybatis快速入门 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/6501c2109c4442118ceb6014725e48e4.png //logback.xml <?xml ver…...

UDP(Echoserver)

网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法&#xff1a;netstat [选项] 功能&#xff1a;查看网络状态 常用选项&#xff1a; n 拒绝显示别名&#…...

企业如何增强终端安全?

在数字化转型加速的今天&#xff0c;企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机&#xff0c;到工厂里的物联网设备、智能传感器&#xff0c;这些终端构成了企业与外部世界连接的 “神经末梢”。然而&#xff0c;随着远程办公的常态化和设备接入的爆炸式…...

Mysql中select查询语句的执行过程

目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析&#xff08;Parser&#xff09; 2.4、执行sql 1. 预处理&#xff08;Preprocessor&#xff09; 2. 查询优化器&#xff08;Optimizer&#xff09; 3. 执行器…...

SQL慢可能是触发了ring buffer

简介 最近在进行 postgresql 性能排查的时候,发现 PG 在某一个时间并行执行的 SQL 变得特别慢。最后通过监控监观察到并行发起得时间 buffers_alloc 就急速上升,且低水位伴随在整个慢 SQL,一直是 buferIO 的等待事件,此时也没有其他会话的争抢。SQL 虽然不是高效 SQL ,但…...

MySQL 部分重点知识篇

一、数据库对象 1. 主键 定义 &#xff1a;主键是用于唯一标识表中每一行记录的字段或字段组合。它具有唯一性和非空性特点。 作用 &#xff1a;确保数据的完整性&#xff0c;便于数据的查询和管理。 示例 &#xff1a;在学生信息表中&#xff0c;学号可以作为主键&#xff…...

LangFlow技术架构分析

&#x1f527; LangFlow 的可视化技术栈 前端节点编辑器 底层框架&#xff1a;基于 &#xff08;一个现代化的 React 节点绘图库&#xff09; 功能&#xff1a; 拖拽式构建 LangGraph 状态机 实时连线定义节点依赖关系 可视化调试循环和分支逻辑 与 LangGraph 的深…...

Python训练营-Day26-函数专题1:函数定义与参数

题目1&#xff1a;计算圆的面积 任务&#xff1a; 编写一个名为 calculate_circle_area 的函数&#xff0c;该函数接收圆的半径 radius 作为参数&#xff0c;并返回圆的面积。圆的面积 π * radius (可以使用 math.pi 作为 π 的值)要求&#xff1a;函数接收一个位置参数 radi…...