Spring MVC 接收 json 和返回 json (14)
目录
总入口
测试case
源码分析
1. 针对@RequestBody的参数解析
2. 针对 @ResponseBody 的返回值处理
总入口
通过上一篇Spring MVC 参数解析(13)_chen_yao_kerr的博客-CSDN博客的说明,相信大家对Sping MVC的参数解析有了一定的了解,下面对我们开发中最常用的传JSON以及前端接受JSON进行分析。
参数解析 以及 返回值的入口,上一篇我们说过可以快速找到的。 下面进入总入口:

测试case
业务方法:
@RequestMapping(value = "/queryUser3", method = RequestMethod.POST)public @ResponseBody ZgGoods queryUser3(@NotNull @RequestBody ZgGoods g){g.setGoodName("update name");return g;}
POJO:
package com.xiangxue.jack.pojo;public class ZgGoods {private String goodCode;private String goodName;private Integer count;public String getGoodCode() {return goodCode;}public void setGoodCode(String goodCode) {this.goodCode = goodCode == null ? null : goodCode.trim();}public String getGoodName() {return goodName;}public void setGoodName(String goodName) {this.goodName = goodName == null ? null : goodName.trim();}public Integer getCount() {return count;}public void setCount(Integer count) {this.count = count;}
}
发送的JSON以及接收的JSON:

源码分析
1. 针对@RequestBody的参数解析
其实,就是就是读取流信息,然后按照 对象的方法获取实际的参数类型,将读取的信息封装成实际的参数信息。具体步骤如下:
首先快速锁定参数解析的最关键代码处,我们发现 @RequestBody注解使用的参数解析器为 RequestResponseBodyMethodProcessor。 这个解析器既负责参数解析,也负责返回值处理

过度步骤:

解析的核心代码:


最后,就是反射调用业务代码了:

2. 针对 @ResponseBody 的返回值处理

因为JSON的解析 与 返回值处理,使用的是同一个类RequestResponseBodyMethodProcessor,所有debug直接打在处理类的 handleReturnValue方法中

中间过程我就不累赘了,感兴趣的童鞋可以自己读读源码。其实,最终是以流的形式输出的,输出的格式为JSON串

相关文章:
Spring MVC 接收 json 和返回 json (14)
目录 总入口 测试case 源码分析 1. 针对RequestBody的参数解析 2. 针对 ResponseBody 的返回值处理 总入口 通过上一篇Spring MVC 参数解析(13)_chen_yao_kerr的博客-CSDN博客的说明,相信大家对Sping MVC的参数解析有了一定的了解&…...
注释和关键字
注释 注释概念 ●注释是在程序指定位置添加的说明性信息 ●简单理解:对代码的一种解释说明,方便我们程序员更好的去阅读代码 例如: public class HelloWorld {//这是通过class定义了一个类,类名叫HelloWorld public static voi…...
第一次参加CSDN周赛,这体验很难说···
👨💻个人主页:花无缺 欢迎 点赞👍 收藏⭐ 留言📝 加关注✅! 本文由 花无缺 原创 本文章收录于专栏 【CSDN周赛】 本篇文章目录 🌏前言🌏一、勾股数🌸题目描述🌸题解 &a…...
8.DRF组件之认证、权限
DRF(Django Rest Framework)提供了一套权限和身份认证系统,可以在视图中进行配置。权限系统用于控制用户对资源的访问权限,身份认证系统用于验证用户的身份信息。 DRF支持以下几种权限控制方式: AllowAny:不做任何验证,允许所有用户访问。 IsAuthenticated:只允许已经…...
初识Tkinter弹窗
Tkinter弹窗 Tkinter是什么 Tkinter 是使用 python 进行窗口视窗设计的模块。Tkinter模块(“Tk 接口”)是Python的标准Tk GUI工具包的接口。作为 python 特定的GUI界面,是一个图像的窗口,tkinter是python 自带的,可以编辑的GUI界面ÿ…...
设计模式之责任链模式(C++)
作者:翟天保Steven 版权声明:著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处 一、责任链模式是什么? 责任链模式是一种行为型的软件设计模式,对象内存在对下家的引用,层层连…...
音游判定原理详解——从触摸屏幕到判定音符【Project SEKAI攻略】
“音乐游戏”一般简称为“音游”,玩家需要配合音乐的节奏来进行一定的动作。 《Project SEKAI》作为一个“移动端音游”,绝大多数玩家会使用手机、平板电脑等移动设备的触摸屏进行游玩,也有极少数的玩家不按常理出牌,使用手台、键…...
【论文阅读】Self-Paced Boost Learning for Classification
论文下载 bib: INPROCEEDINGS{PiLi2016SPBL,title {Self-Paced Boost Learning for Classification},author {Te Pi and Xi Li and Zhongfei Zhang and Deyu Meng and Fei Wu and Jun Xiao and Yueting Zhuang},booktitle {IJCAI},year {2016},pages {1932--1938} …...
通过CSIG—走进合合信息探讨生成式AI及文档图像处理的前景和价值
一、前言 最近有幸参加了由中国图象图形学学会(CSIG)主办,合合信息、CSIG文档图像分析与识别专业委员会联合承办的“CSIG企业行——走进合合信息”的分享会,这次活动以“图文智能处理与多场景应用技术展望”为主题,聚…...
流程图拖拽视觉编程--概述
一般的机器视觉平台采用纯代码的编程方式,如opencv、halcon,使用门槛高、难度大、定制性强、开发周期长,因此迫切需要一个低代码开发的视觉应用平台。AOI缺陷检测的对象往往缺陷种类多,将常用的图像处理算子封装成图形节点,如抓直…...
深度学习中的卷积神经网络
博主简介 博主是一名大二学生,主攻人工智能研究。感谢让我们在CSDN相遇,博主致力于在这里分享关于人工智能,c,Python,爬虫等方面知识的分享。 如果有需要的小伙伴可以关注博主,博主会继续更新的,…...
vue3的介绍和两种创建方式(cli和vite)
目录 一、vue3的介绍 (一)vue3的简介 (二)vue3对比vue2带来的性能提升 二、vue3的两种创建方式 方式一:使用vue-cli创建(推荐--全面) 操作步骤 方式二:使用vite创建 操作步…...
camunda工作流user task如何使用
在Camunda中使用User Task通常需要以下步骤: 1、创建User Task:使用BPMN 2.0图形化设计器(如Camunda Modeler),将User Task元素拖到流程图中,并为任务命名,指定参与者(用户或用户组…...
三元运算符
三元运算符 三元运算符通常在Python⾥被称为条件表达式 这些表达式基于真(true)/假(not)的条件判 断 在Python 2.4以上才有了三元操作。 下⾯是⼀个伪代码和例⼦: 伪代码: 如果条件为真,返回真 否则返回假 condition_is_true if condition else c…...
Vue3 Element-plus el-menu无限级菜单组件封装
对于element中提供给我们的el-menu组件最多可以实现三层嵌套,如果多一层数据只能自己通过变量去加一层,如果加了两层、三层这种往往是行不通的,所以只能进行封装 效果图 一、定义数据 MenuData.ts export default [{id: "1",name…...
( “树” 之 BST) 669. 修剪二叉搜索树 ——【Leetcode每日一题】
二叉查找树(BST):根节点大于等于左子树所有节点,小于等于右子树所有节点。 二叉查找树中序遍历有序。 669. 修剪二叉搜索树 给你二叉搜索树的根节点 root ,同时给定最小边界low 和最大边界 high。通过修剪二叉搜索树&…...
【C语言】浅涉结构体(声明、定义、类型、定义及初始化、成员访问及传参)
简单不先于复杂,而是在复杂之后。 目录 1. 结构体的声明 1.1 结构体的基础知识 1.2 结构的声明 1.3 结构成员的类型 1.4 结构体变量的定义和初始化 2. 结构体成员的访问 3. 结构体传参 1. 结构体的声明 1.1 结构体的基础知识 结构是一些值的集合&…...
设计模式-结构型模式之装饰模式
3. 装饰模式 3.1. 模式动机 一般有两种方式可以实现给一个类或对象增加行为: 继承机制 使用继承机制是给现有类添加功能的一种有效途径,通过继承一个现有类可以使得子类在拥有自身方法的同时还拥有父类的方法。但是这种方法是静态的,用户不能…...
【Chatgpt4 教学】 NLP(自然语言处理)第九课 朴素贝叶斯分类器的工作原理 机器学习算法
我在起,点更新NLP自然语言处理》《王老师带我成为救世主》 为啥为它单独开章,因为它值得,它成功的让我断了一更,让我实践了自上而下找能够理解的知识点,然后自下而上的学习给自己的知识升级,将自己提升到能…...
基于html+css的图片展示17
准备项目 项目开发工具 Visual Studio Code 1.44.2 版本: 1.44.2 提交: ff915844119ce9485abfe8aa9076ec76b5300ddd 日期: 2020-04-16T16:36:23.138Z Electron: 7.1.11 Chrome: 78.0.3904.130 Node.js: 12.8.1 V8: 7.8.279.23-electron.0 OS: Windows_NT x64 10.0.19044 项目…...
Docker 离线安装指南
参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性,不同版本的Docker对内核版本有不同要求。例如,Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本,Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...
基于FPGA的PID算法学习———实现PID比例控制算法
基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容:参考网站: PID算法控制 PID即:Proportional(比例)、Integral(积分&…...
基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真
目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销,平衡网络负载,延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...
ESP32读取DHT11温湿度数据
芯片:ESP32 环境:Arduino 一、安装DHT11传感器库 红框的库,别安装错了 二、代码 注意,DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...
MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...
页面渲染流程与性能优化
页面渲染流程与性能优化详解(完整版) 一、现代浏览器渲染流程(详细说明) 1. 构建DOM树 浏览器接收到HTML文档后,会逐步解析并构建DOM(Document Object Model)树。具体过程如下: (…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...
C++ 基础特性深度解析
目录 引言 一、命名空间(namespace) C 中的命名空间 与 C 语言的对比 二、缺省参数 C 中的缺省参数 与 C 语言的对比 三、引用(reference) C 中的引用 与 C 语言的对比 四、inline(内联函数…...
ElasticSearch搜索引擎之倒排索引及其底层算法
文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...
土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等
🔍 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术,可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势,还能有效评价重大生态工程…...
