当前位置: 首页 > news >正文

[Daimayuan] 走不出的迷宫(C++,图论,DP)

有一个 H H H W W W 列的迷宫(行号从上到下是 1 − H 1−H 1H,列号从左到右是 1 − W 1−W 1W),现在有一个由 .# 组成的 HW 列的矩阵表示这个迷宫的构造,. 代表可以通过的空地,# 代表不能通过的墙。

现在有个人从 起点 ( 1 , 1 ) (1,1) (1,1) 开始走,他每一步只能往右走一格或者往下走一格,并且他不能跨越迷宫的边界。他会一直走,直到没有可以走的路时停下来。

请问这个人最多可以经过多少个格子?

输入格式

第一行两个整数 H H H W W W,表示迷宫有 H H H W W W 列。

接下来一个 H H H W W W 列的由 .# 组成的矩阵,表示迷宫的构造。

注意:保证 ( 1 , 1 ) (1,1) (1,1) 的位置一定是 .

输出格式

一个整数,表示最多步数。

样例输入1

3 4
.#..
..#.
..##

样例输出1

4

样例输入2

1 1
.

样例输出2

1

样例输入3

5 5
.....
.....
.....
.....
.....

样例输出3

9

数据规模

对于全部数据保证 1 ≤ H , W ≤ 100 1≤H,W≤100 1H,W100

解题思路

主体思路为动态规划,时间复杂度为 O ( H ∗ W ) O(H*W) O(HW)

由题意可知,我们到达一个格子的方式只有从左边和上边到达两种情况,那么我们就继承这两种情况中步数更多的一种 + 1 +1 +1来更新:

sum[i][j] = max(sum[i - 1][j], sum[i][j - 1]) + 1;

采用二重循环遍历整张图,由循环顺序,显而易见:在我们到达(i, j)之前,已经到达了(i - 1, j)(i, j - 1)

for (int i = 1; i <= h; i++) {for (int j = 1; j <= w; j++) {sum[i][j] = max(sum[i - 1][j], sum[i][j - 1]) + 1;}
}

但是需要注意两点:

(1)注意障碍物的存在,以下代码采用的方式是掩码把墙的sum置为 0 0 0

(2)注意寻找最大步数时还需要进行一次 B F S BFS BFS,因为我们可能到达不了某些格子,从而导致我们得到的答案并不是sum数组中的最大值。

AC代码如下:

#include <iostream>
#include <queue>
using namespace std;
const int max_h = 100;
const int max_w = 100;bool map[max_h + 1][max_w + 1], book[max_h][max_w];
long long sum[max_h + 1][max_w + 1];
long long h, w, ans = 1;
struct node { int x, y; };
queue<node>q;inline void read() {string str;cin >> h >> w;for (int i = 1; i <= h; i++) {cin >> str;for (int j = 1; j <= w; j++) {if (str[j - 1] == '.') map[i][j] = true;else map[i][j] = false;}}
}void bfs() {q.push(node{ 1,1 });book[1][1] = true;int step[2][2] = { {1,0}, {0,1} }, temp_x, temp_y;while (!q.empty()) {node temp = q.front(); q.pop();for (int i = 0; i < 2; i++) {temp_x = step[i][0] + temp.x;temp_y = step[i][1] + temp.y;if (temp_x > h || temp_y > w) continue;if (!map[temp_x][temp_y]) continue;if (book[temp_x][temp_y]) continue;q.push(node{ temp_x,temp_y });book[temp_x][temp_y] = true;ans = max(ans, sum[temp_x][temp_y]);}}
}inline void solve() {for (int i = 1; i <= h; i++) {for (int j = 1; j <= h; j++) {sum[i][j] = max(sum[i - 1][j] * map[i - 1][j],sum[i][j - 1] * map[i][j - 1]) + 1;}}bfs();cout << ans << endl;
}int main() {read();solve();return 0;
}

相关文章:

[Daimayuan] 走不出的迷宫(C++,图论,DP)

有一个 H H H 行 W W W 列的迷宫&#xff08;行号从上到下是 1 − H 1−H 1−H&#xff0c;列号从左到右是 1 − W 1−W 1−W&#xff09;&#xff0c;现在有一个由 . 和 # 组成的 H 行 W 列的矩阵表示这个迷宫的构造&#xff0c;. 代表可以通过的空地&#xff0c;# 代表不…...

【LeetCode: 1416. 恢复数组 | 暴力递归=>记忆化搜索=>动态规划 】

&#x1f680; 算法题 &#x1f680; &#x1f332; 算法刷题专栏 | 面试必备算法 | 面试高频算法 &#x1f340; &#x1f332; 越难的东西,越要努力坚持&#xff0c;因为它具有很高的价值&#xff0c;算法就是这样✨ &#x1f332; 作者简介&#xff1a;硕风和炜&#xff0c;…...

centos7查看磁盘io

1.查看所使用到的命令为iostat&#xff0c;centos7没有自带iostat&#xff0c;需要安装一下 2.安装iostat命令 yum -y install sysstat 3.使用iostat命令 iostat %user&#xff1a;表示用户空间进程使用 CPU 时间的百分比 %nice&#xff1a;表示用户空间进程以降低优先级的…...

浅析低代码开发的典型应用构建场景v

在数字经济蓬勃发展的大势之下&#xff0c;企业软件开发人员供给不足、开发速度慢、开发成本高、数字化和智能化成效不明显等问题日益凸出&#xff0c;阻碍了企业的数字化转型。 而近年来&#xff0c;低代码的出现推动了经济社会的全面提效&#xff0c;也成为人才供求矛盾的润…...

3 连续模块(二)

3.5 零极点增益模块 在控制系统设计和分析中&#xff0c;常用的函数包括 传递函数&#xff08;tf&#xff09;、零极点&#xff08;zpk&#xff09;和状态空间&#xff08;ss&#xff09;函数 传递函数&#xff08;tf&#xff09;&#xff1a;用于表示线性时不变系统的输入输出…...

ElasticSearch 部署及安装ik分词器

ansiable playbook链接&#xff1a; https://download.csdn.net/download/weixin_43798031/87719490 需要注意的点&#xff1a;公司es集群现以三个角色部署分别为 Gateway、Master、Data 简单的理解可以理解为在每台机器上部署了三个es&#xff0c;以端口和配置文件来区分这三…...

汽车充电桩检测设备TK4860C交流充电桩检定装置

TK4860C是一款在交流充电桩充电过程中实时检测充电电量的标准仪器&#xff0c;仪器以新能源车为负载&#xff0c;结合宽动态范围测量技术、电能ms级高速刷新等技术&#xff0c;TK4860C实现充电全过程的累积电能精准计量&#xff0c;相比于传统的预设检定点的稳态计量&#xff0…...

备份和恢复:确保数据安全

备份和恢复&#xff1a;确保数据安全 在计算机领域中&#xff0c;备份和恢复数据对于确保数据安全至关重要。本文将介绍备份策略概述、使用mysqldump进行备份、使用MySQL Enterprise Backup进行备份、恢复数据以及备份和恢复的最佳实践。 备份策略概述 在制定备份策略时&…...

8 DWA(一)

8 DWA DMA简介 DMA&#xff08;Direct Memory Access&#xff09;直接存储器存取&#xff08;可以直接访问32内部存储器&#xff0c;包括内存SRAM&#xff0c;Flash&#xff09; DMA可以提供外设和存储器或者存储器和存储器之间的高速数据传输&#xff0c;无须CPU干预&#x…...

mysql慢查询日志

概念 MySQL的慢查询日志是MySQL提供的一种日志记录&#xff0c;它用来记录在MySQL中响应时间超过阀值的语句&#xff0c;具体指运行时间超过long_query_time值的SQL&#xff0c;则会被记录到慢查询日志中。long_query_time的默认值为10&#xff0c;意思是运行10秒以上的语句。…...

Sentinel介绍及搭建

分布式流量防护 服务雪崩 服务提供者不可用导致服务调用者也跟着不可用&#xff0c;以此类推引起整个链路中的所有微服务都不可用 分布式流量防护 在分布式系统中&#xff0c;服务之间的相互调用会生成分布式流量。如何通过组件进行流量防护&#xff0c;并有效控制流量&…...

最受信任的低代码平台排行榜

近年来&#xff0c;随着数字化转型的兴起&#xff0c;低代码平台获得了大量关注。它允许用户在几乎没有编码知识的情况下创建应用程序&#xff0c;从而使企业能够简化其流程并提高效率。随着低代码平台的日益流行&#xff0c;要确定哪些平台最可靠、最值得信赖并非易事。在本文…...

Django框架之创建项目、应用并配置数据库

django3.0框架创建项目、应用并配置数据库 创建项目 进入命令行 新建一个全英文的目录 进入目录 输入命令 django-admin startproject project 项目目录层级 查看当前目录层级 tree /f 目录文件说明 创建数据库 做一个学生管理系统做演示&#xff0c;使用navicat创建数据…...

软件测试之基础概念学习篇(需求 + 测试用例 + 开发模型 + 测试模型 + BUG)

文章目录 1. 什么是软件测试2. 软件测试和软件开发的区别3. 软件测试和软件调试的区别4. 什么是需求1&#xff09;以需求为依据设计测试用例 5. 测试用例是什么6. 什么是 BUG&#xff08;软件错误&#xff09;7. 五个开发模型1&#xff09;瀑布模型2&#xff09;螺旋模型3&…...

Windows下版本控制器(SVN) - 1、开发中的实际问题+2、版本控制简介

文章目录 基础知识-Windows下版本控制器(SVN)1、开发中的实际问题2、版本控制简介2.1 版本控制[Revision control]2.2 Subversion2.3 Subversion 的优良特性2.4 SVN 的工作原理&#xff1a;2.5 SVN 基本操作 本人其他相关文章链接 基础知识-Windows下版本控制器(SVN) 1、开发中…...

Learning Dynamic Facial Radiance Fields for Few-Shot Talking Head Synthesis 笔记

Learning Dynamic Facial Radiance Fields for Few-Shot Talking Head Synthesis 笔记 摘要 Talking head synthesis is an emerging technology with wide applications in film dubbing, virtual avatars and online education. Recent NeRF-based methods generate more n…...

SpringBoot 项目整合 Redis 教程详解

✅作者简介&#xff1a;2022年博客新星 第八。热爱国学的Java后端开发者&#xff0c;修心和技术同步精进。 &#x1f34e;个人主页&#xff1a;Java Fans的博客 &#x1f34a;个人信条&#xff1a;不迁怒&#xff0c;不贰过。小知识&#xff0c;大智慧。 &#x1f49e;当前专栏…...

3ASC25H214 DATX130以力控制为基础的装配应用方面已经形成了一个解决方案

​ 3ASC25H214 DATX130以力控制为基础的装配应用方面已经形成了一个解决方案 ABB的机器人解决方案最终选择了IRB6400机器人 ABB的解决方案 ABB一直都在不断地研究和开发机器人应用的新技术&#xff0c;有一部分研究活动是与大学进行合作的&#xff0c;其中一项是ABB的科学家和…...

Java的位运算

目录 1 Java中支持的位运算 2 位运算规则 3 逻辑运算 3.1 与运算&#xff08;&&#xff09; 3.2 或运算&#xff08;|&#xff09; 3.3 异或运算&#xff08;^&#xff09; 3.3 取反运算&#xff08;~&#xff09; 4 位移操作 4.1 左移&#xff08;<<&#…...

FastDFS分布式文件存储

FastDFS文件上传 简介&#xff1a; 主要解决&#xff1a;大容量的文件存储和高并发访问的问题 论坛&#xff1a;https://bbs.chinaunix.net 下载网站&#xff1a;https://sourceforge.net/projects/fastdfs/files/ 安装参考&#xff1a;https://www.cnblogs.com/cxygg/p/1…...

从零实现富文本编辑器#5-编辑器选区模型的状态结构表达

先前我们总结了浏览器选区模型的交互策略&#xff0c;并且实现了基本的选区操作&#xff0c;还调研了自绘选区的实现。那么相对的&#xff0c;我们还需要设计编辑器的选区表达&#xff0c;也可以称为模型选区。编辑器中应用变更时的操作范围&#xff0c;就是以模型选区为基准来…...

使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装

以下是基于 vant-ui&#xff08;适配 Vue2 版本 &#xff09;实现截图中照片上传预览、删除功能&#xff0c;并封装成可复用组件的完整代码&#xff0c;包含样式和逻辑实现&#xff0c;可直接在 Vue2 项目中使用&#xff1a; 1. 封装的图片上传组件 ImageUploader.vue <te…...

高危文件识别的常用算法:原理、应用与企业场景

高危文件识别的常用算法&#xff1a;原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件&#xff0c;如包含恶意代码、敏感数据或欺诈内容的文档&#xff0c;在企业协同办公环境中&#xff08;如Teams、Google Workspace&#xff09;尤为重要。结合大模型技术&…...

【决胜公务员考试】求职OMG——见面课测验1

2025最新版&#xff01;&#xff01;&#xff01;6.8截至答题&#xff0c;大家注意呀&#xff01; 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:&#xff08; B &#xff09; A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...

pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)

目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关&#xff0…...

dify打造数据可视化图表

一、概述 在日常工作和学习中&#xff0c;我们经常需要和数据打交道。无论是分析报告、项目展示&#xff0c;还是简单的数据洞察&#xff0c;一个清晰直观的图表&#xff0c;往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server&#xff0c;由蚂蚁集团 AntV 团队…...

Docker 本地安装 mysql 数据库

Docker: Accelerated Container Application Development 下载对应操作系统版本的 docker &#xff1b;并安装。 基础操作不再赘述。 打开 macOS 终端&#xff0c;开始 docker 安装mysql之旅 第一步 docker search mysql 》〉docker search mysql NAME DE…...

LRU 缓存机制详解与实现(Java版) + 力扣解决

&#x1f4cc; LRU 缓存机制详解与实现&#xff08;Java版&#xff09; 一、&#x1f4d6; 问题背景 在日常开发中&#xff0c;我们经常会使用 缓存&#xff08;Cache&#xff09; 来提升性能。但由于内存有限&#xff0c;缓存不可能无限增长&#xff0c;于是需要策略决定&am…...

【Elasticsearch】Elasticsearch 在大数据生态圈的地位 实践经验

Elasticsearch 在大数据生态圈的地位 & 实践经验 1.Elasticsearch 的优势1.1 Elasticsearch 解决的核心问题1.1.1 传统方案的短板1.1.2 Elasticsearch 的解决方案 1.2 与大数据组件的对比优势1.3 关键优势技术支撑1.4 Elasticsearch 的竞品1.4.1 全文搜索领域1.4.2 日志分析…...

Unity VR/MR开发-VR开发与传统3D开发的差异

视频讲解链接&#xff1a;【XR马斯维】VR/MR开发与传统3D开发的差异【UnityVR/MR开发教程--入门】_哔哩哔哩_bilibili...