[Daimayuan] 走不出的迷宫(C++,图论,DP)
有一个 H H H 行 W W W 列的迷宫(行号从上到下是 1 − H 1−H 1−H,列号从左到右是 1 − W 1−W 1−W),现在有一个由 .
和 #
组成的 H
行 W
列的矩阵表示这个迷宫的构造,.
代表可以通过的空地,#
代表不能通过的墙。
现在有个人从 起点 ( 1 , 1 ) (1,1) (1,1) 开始走,他每一步只能往右走一格或者往下走一格,并且他不能跨越迷宫的边界。他会一直走,直到没有可以走的路时停下来。
请问这个人最多可以经过多少个格子?
输入格式
第一行两个整数 H H H, W W W,表示迷宫有 H H H 行 W W W 列。
接下来一个 H H H 行 W W W 列的由 .
和 #
组成的矩阵,表示迷宫的构造。
注意:保证 ( 1 , 1 ) (1,1) (1,1) 的位置一定是 .
。
输出格式
一个整数,表示最多步数。
样例输入1
3 4
.#..
..#.
..##
样例输出1
4
样例输入2
1 1
.
样例输出2
1
样例输入3
5 5
.....
.....
.....
.....
.....
样例输出3
9
数据规模
对于全部数据保证 1 ≤ H , W ≤ 100 1≤H,W≤100 1≤H,W≤100
解题思路
主体思路为动态规划,时间复杂度为 O ( H ∗ W ) O(H*W) O(H∗W)。
由题意可知,我们到达一个格子的方式只有从左边和上边到达两种情况,那么我们就继承这两种情况中步数更多的一种 + 1 +1 +1来更新:
sum[i][j] = max(sum[i - 1][j], sum[i][j - 1]) + 1;
采用二重循环遍历整张图,由循环顺序,显而易见:在我们到达(i, j)
之前,已经到达了(i - 1, j)
和(i, j - 1)
。
for (int i = 1; i <= h; i++) {for (int j = 1; j <= w; j++) {sum[i][j] = max(sum[i - 1][j], sum[i][j - 1]) + 1;}
}
但是需要注意两点:
(1)注意障碍物的存在,以下代码采用的方式是掩码把墙的sum
置为 0 0 0;
(2)注意寻找最大步数时还需要进行一次 B F S BFS BFS,因为我们可能到达不了某些格子,从而导致我们得到的答案并不是sum
数组中的最大值。
AC代码如下:
#include <iostream>
#include <queue>
using namespace std;
const int max_h = 100;
const int max_w = 100;bool map[max_h + 1][max_w + 1], book[max_h][max_w];
long long sum[max_h + 1][max_w + 1];
long long h, w, ans = 1;
struct node { int x, y; };
queue<node>q;inline void read() {string str;cin >> h >> w;for (int i = 1; i <= h; i++) {cin >> str;for (int j = 1; j <= w; j++) {if (str[j - 1] == '.') map[i][j] = true;else map[i][j] = false;}}
}void bfs() {q.push(node{ 1,1 });book[1][1] = true;int step[2][2] = { {1,0}, {0,1} }, temp_x, temp_y;while (!q.empty()) {node temp = q.front(); q.pop();for (int i = 0; i < 2; i++) {temp_x = step[i][0] + temp.x;temp_y = step[i][1] + temp.y;if (temp_x > h || temp_y > w) continue;if (!map[temp_x][temp_y]) continue;if (book[temp_x][temp_y]) continue;q.push(node{ temp_x,temp_y });book[temp_x][temp_y] = true;ans = max(ans, sum[temp_x][temp_y]);}}
}inline void solve() {for (int i = 1; i <= h; i++) {for (int j = 1; j <= h; j++) {sum[i][j] = max(sum[i - 1][j] * map[i - 1][j],sum[i][j - 1] * map[i][j - 1]) + 1;}}bfs();cout << ans << endl;
}int main() {read();solve();return 0;
}
相关文章:
[Daimayuan] 走不出的迷宫(C++,图论,DP)
有一个 H H H 行 W W W 列的迷宫(行号从上到下是 1 − H 1−H 1−H,列号从左到右是 1 − W 1−W 1−W),现在有一个由 . 和 # 组成的 H 行 W 列的矩阵表示这个迷宫的构造,. 代表可以通过的空地,# 代表不…...

【LeetCode: 1416. 恢复数组 | 暴力递归=>记忆化搜索=>动态规划 】
🚀 算法题 🚀 🌲 算法刷题专栏 | 面试必备算法 | 面试高频算法 🍀 🌲 越难的东西,越要努力坚持,因为它具有很高的价值,算法就是这样✨ 🌲 作者简介:硕风和炜,…...

centos7查看磁盘io
1.查看所使用到的命令为iostat,centos7没有自带iostat,需要安装一下 2.安装iostat命令 yum -y install sysstat 3.使用iostat命令 iostat %user:表示用户空间进程使用 CPU 时间的百分比 %nice:表示用户空间进程以降低优先级的…...

浅析低代码开发的典型应用构建场景v
在数字经济蓬勃发展的大势之下,企业软件开发人员供给不足、开发速度慢、开发成本高、数字化和智能化成效不明显等问题日益凸出,阻碍了企业的数字化转型。 而近年来,低代码的出现推动了经济社会的全面提效,也成为人才供求矛盾的润…...

3 连续模块(二)
3.5 零极点增益模块 在控制系统设计和分析中,常用的函数包括 传递函数(tf)、零极点(zpk)和状态空间(ss)函数 传递函数(tf):用于表示线性时不变系统的输入输出…...

ElasticSearch 部署及安装ik分词器
ansiable playbook链接: https://download.csdn.net/download/weixin_43798031/87719490 需要注意的点:公司es集群现以三个角色部署分别为 Gateway、Master、Data 简单的理解可以理解为在每台机器上部署了三个es,以端口和配置文件来区分这三…...

汽车充电桩检测设备TK4860C交流充电桩检定装置
TK4860C是一款在交流充电桩充电过程中实时检测充电电量的标准仪器,仪器以新能源车为负载,结合宽动态范围测量技术、电能ms级高速刷新等技术,TK4860C实现充电全过程的累积电能精准计量,相比于传统的预设检定点的稳态计量࿰…...
备份和恢复:确保数据安全
备份和恢复:确保数据安全 在计算机领域中,备份和恢复数据对于确保数据安全至关重要。本文将介绍备份策略概述、使用mysqldump进行备份、使用MySQL Enterprise Backup进行备份、恢复数据以及备份和恢复的最佳实践。 备份策略概述 在制定备份策略时&…...

8 DWA(一)
8 DWA DMA简介 DMA(Direct Memory Access)直接存储器存取(可以直接访问32内部存储器,包括内存SRAM,Flash) DMA可以提供外设和存储器或者存储器和存储器之间的高速数据传输,无须CPU干预&#x…...

mysql慢查询日志
概念 MySQL的慢查询日志是MySQL提供的一种日志记录,它用来记录在MySQL中响应时间超过阀值的语句,具体指运行时间超过long_query_time值的SQL,则会被记录到慢查询日志中。long_query_time的默认值为10,意思是运行10秒以上的语句。…...

Sentinel介绍及搭建
分布式流量防护 服务雪崩 服务提供者不可用导致服务调用者也跟着不可用,以此类推引起整个链路中的所有微服务都不可用 分布式流量防护 在分布式系统中,服务之间的相互调用会生成分布式流量。如何通过组件进行流量防护,并有效控制流量&…...

最受信任的低代码平台排行榜
近年来,随着数字化转型的兴起,低代码平台获得了大量关注。它允许用户在几乎没有编码知识的情况下创建应用程序,从而使企业能够简化其流程并提高效率。随着低代码平台的日益流行,要确定哪些平台最可靠、最值得信赖并非易事。在本文…...

Django框架之创建项目、应用并配置数据库
django3.0框架创建项目、应用并配置数据库 创建项目 进入命令行 新建一个全英文的目录 进入目录 输入命令 django-admin startproject project 项目目录层级 查看当前目录层级 tree /f 目录文件说明 创建数据库 做一个学生管理系统做演示,使用navicat创建数据…...

软件测试之基础概念学习篇(需求 + 测试用例 + 开发模型 + 测试模型 + BUG)
文章目录 1. 什么是软件测试2. 软件测试和软件开发的区别3. 软件测试和软件调试的区别4. 什么是需求1)以需求为依据设计测试用例 5. 测试用例是什么6. 什么是 BUG(软件错误)7. 五个开发模型1)瀑布模型2)螺旋模型3&…...

Windows下版本控制器(SVN) - 1、开发中的实际问题+2、版本控制简介
文章目录 基础知识-Windows下版本控制器(SVN)1、开发中的实际问题2、版本控制简介2.1 版本控制[Revision control]2.2 Subversion2.3 Subversion 的优良特性2.4 SVN 的工作原理:2.5 SVN 基本操作 本人其他相关文章链接 基础知识-Windows下版本控制器(SVN) 1、开发中…...

Learning Dynamic Facial Radiance Fields for Few-Shot Talking Head Synthesis 笔记
Learning Dynamic Facial Radiance Fields for Few-Shot Talking Head Synthesis 笔记 摘要 Talking head synthesis is an emerging technology with wide applications in film dubbing, virtual avatars and online education. Recent NeRF-based methods generate more n…...

SpringBoot 项目整合 Redis 教程详解
✅作者简介:2022年博客新星 第八。热爱国学的Java后端开发者,修心和技术同步精进。 🍎个人主页:Java Fans的博客 🍊个人信条:不迁怒,不贰过。小知识,大智慧。 💞当前专栏…...

3ASC25H214 DATX130以力控制为基础的装配应用方面已经形成了一个解决方案
3ASC25H214 DATX130以力控制为基础的装配应用方面已经形成了一个解决方案 ABB的机器人解决方案最终选择了IRB6400机器人 ABB的解决方案 ABB一直都在不断地研究和开发机器人应用的新技术,有一部分研究活动是与大学进行合作的,其中一项是ABB的科学家和…...

Java的位运算
目录 1 Java中支持的位运算 2 位运算规则 3 逻辑运算 3.1 与运算(&) 3.2 或运算(|) 3.3 异或运算(^) 3.3 取反运算(~) 4 位移操作 4.1 左移(<<&#…...
FastDFS分布式文件存储
FastDFS文件上传 简介: 主要解决:大容量的文件存储和高并发访问的问题 论坛:https://bbs.chinaunix.net 下载网站:https://sourceforge.net/projects/fastdfs/files/ 安装参考:https://www.cnblogs.com/cxygg/p/1…...

使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式
一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明:假设每台服务器已…...

linux之kylin系统nginx的安装
一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源(HTML/CSS/图片等),响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址,提高安全性 3.负载均衡服务器 支持多种策略分发流量…...

使用VSCode开发Django指南
使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架,专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用,其中包含三个使用通用基本模板的页面。在此…...

vue3+vite项目中使用.env文件环境变量方法
vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量,这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...
.Net Framework 4/C# 关键字(非常用,持续更新...)
一、is 关键字 is 关键字用于检查对象是否于给定类型兼容,如果兼容将返回 true,如果不兼容则返回 false,在进行类型转换前,可以先使用 is 关键字判断对象是否与指定类型兼容,如果兼容才进行转换,这样的转换是安全的。 例如有:首先创建一个字符串对象,然后将字符串对象隐…...
力扣-35.搜索插入位置
题目描述 给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...

JVM虚拟机:内存结构、垃圾回收、性能优化
1、JVM虚拟机的简介 Java 虚拟机(Java Virtual Machine 简称:JVM)是运行所有 Java 程序的抽象计算机,是 Java 语言的运行环境,实现了 Java 程序的跨平台特性。JVM 屏蔽了与具体操作系统平台相关的信息,使得 Java 程序只需生成在 JVM 上运行的目标代码(字节码),就可以…...
tomcat指定使用的jdk版本
说明 有时候需要对tomcat配置指定的jdk版本号,此时,我们可以通过以下方式进行配置 设置方式 找到tomcat的bin目录中的setclasspath.bat。如果是linux系统则是setclasspath.sh set JAVA_HOMEC:\Program Files\Java\jdk8 set JRE_HOMEC:\Program Files…...

【大模型】RankRAG:基于大模型的上下文排序与检索增强生成的统一框架
文章目录 A 论文出处B 背景B.1 背景介绍B.2 问题提出B.3 创新点 C 模型结构C.1 指令微调阶段C.2 排名与生成的总和指令微调阶段C.3 RankRAG推理:检索-重排-生成 D 实验设计E 个人总结 A 论文出处 论文题目:RankRAG:Unifying Context Ranking…...

Pandas 可视化集成:数据科学家的高效绘图指南
为什么选择 Pandas 进行数据可视化? 在数据科学和分析领域,可视化是理解数据、发现模式和传达见解的关键步骤。Python 生态系统提供了多种可视化工具,如 Matplotlib、Seaborn、Plotly 等,但 Pandas 内置的可视化功能因其与数据结…...