当前位置: 首页 > news >正文

基于PaddleServing的串联部署 ocr 识别模型

要点:

  • 使用paddleserving服务


1 首先需要安装PaddleServing部署相关的环境

PaddleServing是PaddlePaddle推出的一种高性能、易扩展、高可用的机器学习服务框架。PaddleOCR中使用PaddleServing主要是为了将训练好的OCR模型部署到线上环境,提供API服务,从而方便用户使用。PaddleServing还提供了一些高级特性,比如多模型融合、负载均衡等,可以帮助用户构建更加完整的机器学习服务系统。

!python -m pip install paddle-serving-server-gpu
!python -m pip install paddle_serving_client
!python -m pip install paddle-serving-app
  • 第一行代码安装 paddle-serving-server-gpu 包,用于启动 PaddleServing 的服务端,并支持 GPU 加速。
  • 第二行代码安装 paddle_serving_client 包,用于通过 API 调用 PaddleServing 的服务端提供的预测服务
  • 第三行代码安装 paddle-serving-app 包,提供了一些 PaddleServing 相关的工具和应用,例如模型转换、模型压缩等。

转化检测模型为serving格式

%cd /home/aistudio/PaddleOCR/deploy/pdserving/
!python -m paddle_serving_client.convert --dirname ../../inference/det_ppocrv3/Student/  \--model_filename inference.pdmodel          \--params_filename inference.pdiparams       \--serving_server ./ppocr_det_v3_serving/ \--serving_client ./ppocr_det_v3_client/

这段代码是将 PaddleOCR 检测模型的参数文件和模型文件转换为 PaddleServing 使用的格式并保存在指定的目录中,然后可以使用指定的配置文件部署以进行推理服务。

  • %cd /home/aistudio/PaddleOCR/deploy/pdserving/: 切换到 PaddleOCR 代码库中的 PaddleServing 部分的目录中。
  • --dirname ../../inference/det_ppocrv3/Student/: 参数文件和模型文件所在的目录。
  • --model_filename inference.pdmodel: 转换后的模型文件名称。
  • --params_filename inference.pdiparams: 转换后的参数文件名称。
  • --serving_server ./ppocr_det_v3_serving/: serving_server参数指定用于运行检测模型服务的 PaddleServing 配置的目录位置。在这种情况下,指定的位置是./ppocr_det_v3_serving/
  • --serving_client ./ppocr_det_v3_client/: serving_client参数指定 PaddleServing 客户端的目录位置,用于在服务期间调用检测模型。在这种情况下,指定的位置是./ppocr_det_v3_client/。

转化识别模型为serving格式

%cd /home/aistudio/PaddleOCR/deploy/pdserving/
!python -m paddle_serving_client.convert --dirname ../../inference/rec_ppocrv3/Student \--model_filename inference.pdmodel          \--params_filename inference.pdiparams       \--serving_server ./ppocr_rec_v3_serving/ \--serving_client ./ppocr_rec_v3_client/

4 启动服务端 

修改后处理代码,首先可以将后处理代码加入到web_service.py中,具体修改154-155行:

# 代码154-155行修改为下面代码
def _postprocess(rec_res):keys = ["型号", "厂家", "版本号", "检定校准分类", "计量器具编号", "烟尘流量","累积体积", "烟气温度", "动压", "静压", "时间", "试验台编号", "预测流速","全压", "烟温", "流速", "工况流量", "标杆流量", "烟尘直读嘴", "烟尘采样嘴","大气压", "计前温度", "计前压力", "干球温度", "湿球温度", "流量", "含湿量"]key_value = []if len(rec_res) > 1:for i in range(len(rec_res) - 1):rec_str, _ = rec_res[i]for key in keys:if rec_str in key:key_value.append([rec_str, rec_res[i + 1][0]])breakreturn key_value
key_value = _postprocess(rec_list)
res = {"result": str(key_value)}
# res = {"result": str(result_list)}

 

4.1 启动服务

%cd /home/aistudio/PaddleOCR/deploy/pdserving/
!python web_service.py 2>&1 >log.txt

4.2 客户端发送请求

%cd /home/aistudio/PaddleOCR/deploy/pdserving/
!python pipeline_http_client.py --image_dir ../../train_data/icdar2015/text_localization/test/142.jpg
  • 执行pipeline_http_client.py命令,将图片路径传入进行识别

在这个过程中,使用了PaddleServing的HTTP API进行图片的传输和识别,pipeline_http_client.py文件是一个Python脚本,用于向PaddleServing发送HTTP请求并获取识别结果。该脚本将输入的图片读取并编码成base64格式,然后将编码后的字符串作为HTTP请求的参数发送给PaddleServing。PaddleServing将接收到的图片解码后送入PaddleOCR中的检测和识别模型进行OCR识别,最后返回识别结果

相关文章:

基于PaddleServing的串联部署 ocr 识别模型

要点: 使用paddleserving服务 1 首先需要安装PaddleServing部署相关的环境 PaddleServing是PaddlePaddle推出的一种高性能、易扩展、高可用的机器学习服务框架。PaddleOCR中使用PaddleServing主要是为了将训练好的OCR模型部署到线上环境,提供API服务&a…...

java OutputStream学习

1.概要 OutputStream位于java.io,它在Java 实现的IO类库中是一个很基础的抽象类。在层级上,是所有字节输出流类的父类,在功能上,表示接受字节并把它们输出。 2.实现类及子类简介 OutputStream有诸多子类: ByteAr…...

java 上传文件生成二进制流文件

最近在项目中遇到一个问题:需要将上传的文件生成输出流,然后将输出流转换为输入流上传到oss。 -------------------------------------------导出代码实现---------------------------------------------------------- ByteArrayOutputStream baos nu…...

质量小议22 -- 多少分合适

60分万岁~???!!! 如果用分数评价质量,多少分合适?60,70,80...还是100,或者 120 对于质量的提升,是雪中送炭,还是锦上添…...

变频器参数设定说明

使用默贝克MT110-0R4-S2B实现下面的练习题: 1、先恢复出厂设置,再输入电机参数,选择静态调谐 2、两种运行模式:多段速(8段)和简易PLC(4段) 3、面板启停,运行模式通过外部…...

实用调试技巧

目录: 1.什么是bug? 2.调试是什么?有多重要? 3.debug和release的介绍 4.Windows环境调试介绍 5.一些调试的实例 6.如何写出好(易于调试)的代码 7.编程常见的错误 1.什么是bug? bug--->臭虫、虫子。 为什么含…...

谁是液冷行业真龙头?疯狂的液冷技术!

“人工智能领域AIGC”、“ChatGPT”、“数据特区”、“东数西算”、“数据中心”,可以说是2023年最热的概念,算力提升的背后,处理器的功耗越来越高,想发挥出处理器的最高性能,需要更高的散热效率。 算力井喷之下&…...

自动化运维工具之Ansible

目录 一、自动化运维 1、通过xshell自动化运维 2、Ansible简介 3、Ansible特点及优势 4、Ansible核心程序 5、Ansible工作原理及流程 6、部署Ansible自动化运维工具 7、Ansible常用模块 (1) ansible命令行模块 (2) command模块 (3) shell模块 (4) cron模块 (5) us…...

霍兰德人格分析雷达图

雷达图 Radar Chart 雷达图是多特性直观展示的重要方式 问题分析 霍兰德认为:人格兴趣与职业之间应有一种内在的对应关系 人格分类:研究型、艺术型、社会型、企业型、传统型、现实性 职业:工程师、实验员、艺术家、推销员、记事员、社会工…...

《Odoo开发者模式必知必会》—— 缘起

Odoo作为业界优秀的开源商务软件,在全球范围内拥有广泛的使用者。在领英国际,可以搜索到全球很多国家都有大量odoo人才需求的招聘信息。在国内,虽然已经有为数不少的企业,他们或者已经使用odoo,或者正在了解odoo&#…...

Java8的Options介绍

Java8引入了一个名为 Options 的新类,它是一个容器,可以保存单个值或根本不保存任何值。Optional目的是提供一种更优雅的方式来处理 null 值,这通常会导致NullPointerException。在这篇博客文章中,我们将探索如何在 Java8中使用 O…...

SpringBoot 多数据源及事务解决方案

1. 背景 一个主库和N个应用库的数据源,并且会同时操作主库和应用库的数据,需要解决以下两个问题: 如何动态管理多个数据源以及切换? 如何保证多数据源场景下的数据一致性(事务)? 本文主要探讨这两个问题的解决方案…...

tcpdump使用教程

一、概述 tcpdump是一个功能强大的,用于抓取网络数据包的命令行工具,与带界面的Wireshark一样,基于libpcap库构建。这篇文章主要介绍tcpdump的使用。关于如何使用tcpdump的资料中,最有用的就是tcpdump的两个手册。 tcpdump使用手…...

Zynq-7000、FMQL45T900的GPIO控制(五)---linux应用层配置GPIO输出控制

上文中详细阐述了对应原理图MIO/EMIO的编号,怎么计算获取linux下gpio的编号 本文涉及C代码上传,下载地址 Zynq-7000、FMQL45T900的GPIO控制c语言代码资源-CSDN文库 本文详细记录一下针对获取到gpio的编号,进行配置输出模式,并进…...

带你搞懂人工智能、机器学习和深度学习!

不少高校的小伙伴找我聊入门人工智能该怎么起步,如何快速入门,多长时间能成长为中高级工程师(聊下来感觉大多数学生党就是焦虑,毕业即失业,尤其现在就业环境这么差),但聊到最后,很多…...

Android 11.0 framework中Launcher的启动流程分析

1.前言 在11.0的系统rom定制化开发中,在rom定制过程中,在对于开发默认Launcher功能,解决开机动画后黑屏,了解fallbackhome机制等等 对于launcher的启动流程来说很重要,接下来就来分析下launcher的启动流程 2.framework中Launcher的启动流程分析的核心类 frameworks/ba…...

2023年第十五届华中杯赛题C 题 空气质量预测与预警

2023年五一假期期间,数学建模竞赛就有四场,各种比赛各种需求应接不暇。因此,对于本次浅析有不足的地方欢迎大家指出。为了更好的帮助大家华中杯参赛,下面带来,C题详细版思路。由于C题的难度,注定选题人数将…...

Go官方指南(一)包、变量、函数

import "time" 获取当前系统时间:time.Now() 每个 Go 程序都是由包构成的 按照约定 ,包名与导入路径的最后一个元素一致。例如,"math/rand"包中的源码均以 package rand 语句开始 在 Go 中,如果一个名字以…...

liunx笔记

快捷键 #移动到行首 ctrla #移动到行尾 ctrle #删除光标之前的字符 ctrlu #删除光标之后的字符 ctrlk #清屏 ctrll正则表达式 正则中普通常用的元字符 元字符功能.匹配除了换行符以外的任意单个字符*前导字符出现0次或连续多次.*任意长度字符^行首(以…开头),如…...

vue3 封装ECharts组件

一、前言 前端开发需要经常使用ECharts图表渲染数据信息,在一个项目中我们经常需要使用多个图表,选择封装ECharts组件复用的方式可以减少代码量,增加开发效率。 ECharts图表大家应该用的都比较多,基础的用法就不细说了&#xff…...

【网络】每天掌握一个Linux命令 - iftop

在Linux系统中,iftop是网络管理的得力助手,能实时监控网络流量、连接情况等,帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...

cf2117E

原题链接&#xff1a;https://codeforces.com/contest/2117/problem/E 题目背景&#xff1a; 给定两个数组a,b&#xff0c;可以执行多次以下操作&#xff1a;选择 i (1 < i < n - 1)&#xff0c;并设置 或&#xff0c;也可以在执行上述操作前执行一次删除任意 和 。求…...

Python爬虫(二):爬虫完整流程

爬虫完整流程详解&#xff08;7大核心步骤实战技巧&#xff09; 一、爬虫完整工作流程 以下是爬虫开发的完整流程&#xff0c;我将结合具体技术点和实战经验展开说明&#xff1a; 1. 目标分析与前期准备 网站技术分析&#xff1a; 使用浏览器开发者工具&#xff08;F12&…...

C++.OpenGL (10/64)基础光照(Basic Lighting)

基础光照(Basic Lighting) 冯氏光照模型(Phong Lighting Model) #mermaid-svg-GLdskXwWINxNGHso {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-GLdskXwWINxNGHso .error-icon{fill:#552222;}#mermaid-svg-GLd…...

NFT模式:数字资产确权与链游经济系统构建

NFT模式&#xff1a;数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新&#xff1a;构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议&#xff1a;基于LayerZero协议实现以太坊、Solana等公链资产互通&#xff0c;通过零知…...

Caliper 配置文件解析:config.yaml

Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...

在web-view 加载的本地及远程HTML中调用uniapp的API及网页和vue页面是如何通讯的?

uni-app 中 Web-view 与 Vue 页面的通讯机制详解 一、Web-view 简介 Web-view 是 uni-app 提供的一个重要组件&#xff0c;用于在原生应用中加载 HTML 页面&#xff1a; 支持加载本地 HTML 文件支持加载远程 HTML 页面实现 Web 与原生的双向通讯可用于嵌入第三方网页或 H5 应…...

C++使用 new 来创建动态数组

问题&#xff1a; 不能使用变量定义数组大小 原因&#xff1a; 这是因为数组在内存中是连续存储的&#xff0c;编译器需要在编译阶段就确定数组的大小&#xff0c;以便正确地分配内存空间。如果允许使用变量来定义数组的大小&#xff0c;那么编译器就无法在编译时确定数组的大…...

Ubuntu系统多网卡多相机IP设置方法

目录 1、硬件情况 2、如何设置网卡和相机IP 2.1 万兆网卡连接交换机&#xff0c;交换机再连相机 2.1.1 网卡设置 2.1.2 相机设置 2.3 万兆网卡直连相机 1、硬件情况 2个网卡n个相机 电脑系统信息&#xff0c;系统版本&#xff1a;Ubuntu22.04.5 LTS&#xff1b;内核版本…...

加密通信 + 行为分析:运营商行业安全防御体系重构

在数字经济蓬勃发展的时代&#xff0c;运营商作为信息通信网络的核心枢纽&#xff0c;承载着海量用户数据与关键业务传输&#xff0c;其安全防御体系的可靠性直接关乎国家安全、社会稳定与企业发展。随着网络攻击手段的不断升级&#xff0c;传统安全防护体系逐渐暴露出局限性&a…...