当前位置: 首页 > news >正文

华为OD机试 - 端口合并(Python)

题目描述

有M个端口组(1<=M<=10),
每个端口组是长度为N的整数数组(1<=N<=100),
如果端口组间存在2个及以上不同端口相同,则认为这2个端口组互相关联,可以合并。

输入描述

第一行输入端口组个数M,再输入M行,每行逗号分割,代表端口组。

备注:端口组内数字可以重复。

输出描述

输出合并后的端口组,用二维数组表示。

组内相同端口仅保留一个,从小到达排序。
组外顺序保持输入顺序
备注:M,N不在限定范围内,统一输出一组空数组[[]]

用例

输入
4
4
2,3,2
1,2
5
输出
[[4],[2,3],[1,2],[5]]
说明
仅有一个端口2相同,不可以合并。

输入
3
2,3,1
4,3,2
5
输出
[[1,2,3,4],[5]]
说明

输入
6
10
4,2,1
9
3,6,9,2
6,3,4
8
输出
[[10],[1,2,3,4,6,9],[9],[8]]
说明

输入

相关文章:

华为OD机试 - 端口合并(Python)

题目描述 有M个端口组(1<=M<=10), 每个端口组是长度为N的整数数组(1<=N<=100), 如果端口组间存在2个及以上不同端口相同,则认为这2个端口组互相关联,可以合并。 输入描述 第一行输入端口组个数M,再输入M行,每行逗号分割,代表端口组。 备注:端口组内数字…...

分部积分法习题

前置知识&#xff1a;分部积分法 例题 计算积分 I n ∫ [ ( x a ) 2 b 2 ] − k d x ( n ≥ 1 ) I_n\int [(xa)^2b^2]^{-k}dx \quad(n\geq 1) In​∫[(xa)2b2]−kdx(n≥1) 解&#xff1a; \qquad 用分部积分法&#xff0c;对任何自然数 k ≥ 1 k\geq 1 k≥1&#xff0c;…...

C++—非递归【循环】遍历二叉树(前序,中序,后序)思路讲解+代码实现

非递归遍历二叉树 前序中序后序 接下来我们在研究如何使用循环实现遍历二叉树时&#xff0c;以下面的二叉树为例&#xff1a; 在下文的讲解中&#xff0c;不对如何构建这颗二叉树做讲解&#xff0c;直接给出代码&#xff0c;如果有不懂的地方欢迎私信我。 文章中的完整源代码链…...

前端002_初始化项目

1、命名和启动项目 将目录名 vue-admin-template-master 重命名为 db-manager-system 将 db-manager-system/package.json 中的 name 值改为 db-manager-system {"name": "db-manager-system","version": "1.0.1","descriptio…...

组合设计模式

组合模式 组合模式定义使用场景1、文件系统的目录结构&#xff1a;2、组织架构图&#xff1a;3、菜单和菜单项&#xff1a;4、使用场景总结&#xff1a; 角色定义Component 抽象构件角色:Leaf 叶子构件:Composite 树枝构件: 需求背景代码实现Component&#xff08;抽象构件角色…...

【MySQL】多表查询

上一篇介绍了外键约束,外键约束是用于连接两张数据表的,所以在此基础上就有了多表查询 之前的查询都是单表查询,这里我们会将多个数据表的数据结果返回在一张表上 文章目录 1.多表关系2.多表查询2.1 多表查询分类2.2 内连接2.3 外连接2.4 自连接2.5 联合查询2.6子查询 1.多表关…...

关于在线帮助中心你需要思考以下几个问题

搭建帮助中心是大多数企业都在尝试做的事情&#xff0c;它的重要性对于企业来说不言而喻。现在对于企业来说&#xff0c;搭建帮助中心或许不是什么难事&#xff0c;但是关于帮助中心&#xff0c;有几个问题需要思考清楚&#xff0c;才能让其发挥最大的价值。 一、如何让用户养成…...

基于FPGA+JESD204B 时钟双通道 6.4GSPS 高速数据采集模块设计(一)总体方案

本章将根据高速数据采集指标要求&#xff0c;分析并确定高速数据采集模块的设计方 案&#xff0c;由此分析数据存储需求及存储速度需求给出高速大容量数据存储方案&#xff0c;完成 双通道高速数据采集模块总体设计方案&#xff0c;并综合采集、存储方案及 AXIe 接口需求 …...

二、Spring Cloud Alibaba环境搭建

一、依赖环境 SpringCloud Alibaba 依赖 Java 环境来运行。还需要为此配置 Maven环境&#xff0c;请确保是在以下版本环境中安装使用。 64 bit JDK 1.8;Maven 3.2.x。 spring-cloud-alibaba相关网址&#xff1a; 地址&#xff1a;https://github.com/alibaba/spring-cloud-…...

瑞萨e2studio(24)----电容触摸配置(1)

瑞萨e2studio.24--电容触摸配置1 概述硬件准备新建工程工程模板保存工程路径芯片配置工程模板选择时钟配置添加TOUCH驱动配置CapTouch开启调优界面启动 CapTouch 调优通过电容触摸点亮LED 概述 这篇文档将创建一个使用 e2 studio 集成 QE 的电容式触摸应用示例&#xff0c;通…...

数据开发常见问题

目录 环境变量过多或者参数值过长时&#xff0c;为什么提交作业失败&#xff1f; 为什么Shell作业状态和相关的YARN Application状态不一致&#xff1f; 创建作业和执行计划的区别是什么&#xff1f; 如何查看作业运行记录&#xff1f; 如何在OSS上查看日志&#xff1f; 读…...

Ae:橡皮擦工具

橡皮擦工具 Eraser Tool 快捷键&#xff1a;Ctrl B 橡皮擦工具 Eraser Tool在工作原理上同 Ae 中的其它绘画工具&#xff08;画笔、仿制图章&#xff09;工具基本一致&#xff0c;都是通过绘制路径&#xff0c;然后基于此路径进行描边&#xff08;可统称为“绘画描边”&…...

干货 | 正确引用参考文献的6大技巧

Hello&#xff0c;大家好&#xff01; 这里是壹脑云科研圈&#xff0c;我是喵君姐姐&#xff5e; 对于学术研究而言&#xff0c;正确引用参考文献非常重要。参考文献不仅展现了自己的学术水平&#xff0c;同时也给研究定位&#xff0c;突显研究在前人研究基础上作出的贡献。 …...

区块链系统探索之路:基于椭圆曲线的私钥与公钥生成

前两节我们探讨了抽象代数的重要概念&#xff1a;有限域&#xff0c;然后研究了基于椭圆曲线上点的怪异”“操作&#xff0c;两者表面看起来牛马不相及&#xff0c;实际上两者在逻辑上有着紧密的联系&#xff0c;简单来说如果我们在椭圆曲线上取一点G,然后让它跟自己做”“操作…...

Linux命令集(Linux常用命令--echo指令篇)

Linux命令集&#xff08;Linux常用命令--echo指令篇&#xff09; Linux常用命令集&#xff08;echo指令篇&#xff09;2.echo(echo)1. 输出自定义内容2. 禁止输出末尾换行符3. 转义功能4. 与特殊字符配合使用实现其余功能 Linux常用命令集&#xff08;echo指令篇&#xff09; 如…...

【电子学会】2023年03月图形化一级 -- 甲壳虫走迷宫

甲壳虫走迷宫 1. 准备工作 &#xff08;1&#xff09;绘制如图所示迷宫背景图&#xff0c;入口在左下角&#xff0c;出口在右上角&#xff0c;线段的颜色为黑色&#xff1b; &#xff08;2&#xff09;删除默认小猫角色&#xff0c;添加角色&#xff1a;Beetle&#xff1b; …...

老外从神话原型中提取的12个品牌个性

老外从神话原型中提取的12个品牌个性 也是西方视角&#xff0c;需要本土化 参照心理学大师荣格的理论&#xff1a;心理学潜意识派 趣讲大白话&#xff1a;品牌的调调是啥 【趣讲信息科技151期】 **************************** 12种原型又归属于4种人性动机。 1、稳定&#xff0…...

unity中的Quaternion.AngleAxis

介绍 unity中的Quaternion.AngleAxis 方法 Quaternion.AngleAxis() 函数是 Unity 引擎中的一个数学函数&#xff0c;用于创建一个绕着某个轴旋转一定角度的旋转四元数。在游戏开发中&#xff0c;经常会用到该函数来旋转物体或计算旋转后的方向向量。 该函数的函数原型为&…...

如何设置渗透测试实验室

导语&#xff1a;在本文中&#xff0c;我将介绍设置渗透实验室的最快方法。在开始下载和安装之前&#xff0c;必须确保你使用的计算机符合某些渗透测试的要求&#xff0c;这可以确保你可以一次运行多个虚拟机而不会出现任何问题。 在本文中&#xff0c;我将介绍设置渗透实验室的…...

Java时间类(八)-- Instant (时间戳类)(常用于Date与LocalDateTime的相互转化)

目录 1. Instant的概述: 2. Instant的常见方法: 3. Date --->Instant--->LocalDateTime 4. LocalDateTime --->Instant--->Date 1. Instant的概述...

Xshell远程连接Kali(默认 | 私钥)Note版

前言:xshell远程连接&#xff0c;私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...

Leetcode 3577. Count the Number of Computer Unlocking Permutations

Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接&#xff1a;3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯&#xff0c;要想要能够将所有的电脑解锁&#x…...

第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明

AI 领域的快速发展正在催生一个新时代&#xff0c;智能代理&#xff08;agents&#xff09;不再是孤立的个体&#xff0c;而是能够像一个数字团队一样协作。然而&#xff0c;当前 AI 生态系统的碎片化阻碍了这一愿景的实现&#xff0c;导致了“AI 巴别塔问题”——不同代理之间…...

MySQL中【正则表达式】用法

MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现&#xff08;两者等价&#xff09;&#xff0c;用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例&#xff1a; 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...

Caliper 配置文件解析:config.yaml

Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...

laravel8+vue3.0+element-plus搭建方法

创建 laravel8 项目 composer create-project --prefer-dist laravel/laravel laravel8 8.* 安装 laravel/ui composer require laravel/ui 修改 package.json 文件 "devDependencies": {"vue/compiler-sfc": "^3.0.7","axios": …...

嵌入式学习笔记DAY33(网络编程——TCP)

一、网络架构 C/S &#xff08;client/server 客户端/服务器&#xff09;&#xff1a;由客户端和服务器端两个部分组成。客户端通常是用户使用的应用程序&#xff0c;负责提供用户界面和交互逻辑 &#xff0c;接收用户输入&#xff0c;向服务器发送请求&#xff0c;并展示服务…...

LINUX 69 FTP 客服管理系统 man 5 /etc/vsftpd/vsftpd.conf

FTP 客服管理系统 实现kefu123登录&#xff0c;不允许匿名访问&#xff0c;kefu只能访问/data/kefu目录&#xff0c;不能查看其他目录 创建账号密码 useradd kefu echo 123|passwd -stdin kefu [rootcode caozx26420]# echo 123|passwd --stdin kefu 更改用户 kefu 的密码…...

LangChain知识库管理后端接口:数据库操作详解—— 构建本地知识库系统的基础《二》

这段 Python 代码是一个完整的 知识库数据库操作模块&#xff0c;用于对本地知识库系统中的知识库进行增删改查&#xff08;CRUD&#xff09;操作。它基于 SQLAlchemy ORM 框架 和一个自定义的装饰器 with_session 实现数据库会话管理。 &#x1f4d8; 一、整体功能概述 该模块…...

对象回调初步研究

_OBJECT_TYPE结构分析 在介绍什么是对象回调前&#xff0c;首先要熟悉下结构 以我们上篇线程回调介绍过的导出的PsProcessType 结构为例&#xff0c;用_OBJECT_TYPE这个结构来解析它&#xff0c;0x80处就是今天要介绍的回调链表&#xff0c;但是先不着急&#xff0c;先把目光…...