Linux线程:死锁
1. 死锁
(1)概念
死锁(DeadLock)指两个或两个以上的进程或线程执行时,由于竞争临界资源而造成阻塞的现象;若不干涉,则无法推进下去。
(2)死锁的原因
① 竞争临界资源。
② 进程推进顺序不当。
(3)死锁的必要条件
① 互斥访问:竞争临界资源;
② 不可剥夺:未使用完临界资源不释放;
③ 请求和保持:已占部分临界资源,仍请求被其他进程或线程占用的临界资源;
④ 循环等待:各进程或线程等待彼此释放临界资源。
(4)如何处理死锁
① 预防死锁;
a)破坏请求和保持:协议1. 运行前一次性申请所有所需资源。
协议2. 逐步获取资源,用完立即释放。
b)破坏不可剥夺:请求不到所有资源,则立即释放所有资源。
c)破坏循环等待:对资源进行排序,规定执行者必须按递增顺序请求资源。
② 避免死锁;资源动态分配时,用某种方式防止系统进入不安全状态,如银行家算法。
③ 检测死锁;允许死锁,有死锁则解除。
2. 死锁示例
两个线程,两个临界资源。线程1先申请资源1,再申请资源2,然后执行临界区代码;线程2申请资源2,再申请资源1,然后执行临界区代码。则可能出现死锁。
代码示例:
#include<stdlib.h>
#include<pthread.h>
#include<stdio.h>pthread_mutex_t mutex1;
pthread_mutex_t mutex2;void* worker1(void* arg) {pthread_mutex_lock(&mutex1);printf("线程1得到资源1.\n");pthread_mutex_lock(&mutex2);printf("线程1得到资源2.\n");printf("线程1执行临界区代码.\n");pthread_mutex_unlock(&mutex1);pthread_mutex_unlock(&mutex2);return NULL;
}void* worker2(void* arg) {pthread_mutex_lock(&mutex2);printf("线程2得到资源2.\n");pthread_mutex_lock(&mutex1);printf("线程2得到资源1.\n");printf("线程2执行临界区代码.\n");pthread_mutex_unlock(&mutex1);pthread_mutex_unlock(&mutex2);return NULL;
}int main(int argc, const char* argv[]) {pthread_t tid1, tid2;int ret = -1;ret = pthread_mutex_init(&mutex1, NULL);ret = pthread_mutex_init(&mutex1, NULL);ret = pthread_create(&tid1, NULL, worker1, NULL);ret = pthread_create(&tid2, NULL, worker2, NULL);ret = pthread_join(tid1, NULL);ret = pthread_join(tid2, NULL);ret = pthread_mutex_destroy(&mutex1);ret = pthread_mutex_destroy(&mutex2);return 0;
}
运行结果:
未发生死锁情况:

发生死锁情况:

如何解决上述示例中的死锁问题?
让两个线程申请资源顺序一致。
相关文章:
Linux线程:死锁
1. 死锁 (1)概念 死锁(DeadLock)指两个或两个以上的进程或线程执行时,由于竞争临界资源而造成阻塞的现象;若不干涉,则无法推进下去。 (2)死锁的原因 ① 竞争临界资源…...
thinkphp+vue+html超市零食品美食推荐系统零食购物商城网站7v281
本系统的开发使获取食品推荐系统信息能够更加方便快捷,同时也使食品推荐系统管理信息变的更加系统化、有序化。系统界面较友好,易于操作 运行环境:phpstudy/wamp/xammp等 开发语言:php 后端框架:Thinkphp5 前端框架:vu…...
思考外语学习的底层逻辑(以英语、法语为例)
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 目录 前言一、英语1.学习历程2.英语学习的心得3.理论检验(持续更新) 二、法语1.学习历程2.读入数据 总结 前言 提示:这里谈谈自己为什么要…...
命名ACL配置
命名ACL配置 【实验目的】 掌握命名ACL的配置。验证配置。 【实验拓扑】 实验拓扑如图1所示。 图1 实验拓扑 设备参数如表所示。 表1 设备参数表 设备 接口 IP地址 子网掩码 默认网关 R1 S0/3/0 192.168.1.1 255.255.255.252 N/A Fa0/0 192.168.2.1 255.255.…...
2008-2019年主要城市PITI指数
2008-2019年主要城市PITI指数 1、来源:附在文件内 2、时间区间:2008-2019年 3、具体时间分布:、2008、2009-2010、2011、2012、2013-2014、2014-2015、2015-2016、2016-2017、2017-2018、2018-2019、 4、范围:包括110个城市&a…...
拷贝构造函数和赋值重载函数详解
1.拷贝构造函数 1.1拷贝构造函数的概念 拷贝构造函数:只有单个形参,该形参是对本类类型对象的引用(一般常用const修饰),在用已存在的类类型对象创建新对象时由编译器自动调用。拷贝构造函数也是特殊的成员函数,其特征如下&#…...
5件关于JavaScript中this参数的事
this 关键字是 JavaScript 中最令人困惑的部分之一,本文试图通过介绍有关它的五个重要事项来阐明其目的和用法。 1、它允许访问同一对象上的其他属性 在 JavaScript 中,函数可以是独立的单元,但它们也可以用作对象的值。考虑下一个对象。 …...
面试题30天打卡-day17
1、什么是内部类? 内部类的分类有哪些 ?内部类的优点 ,内部类有哪些应用场景? 内部类:在一个类中创建一个新的类 内部类主要分为以下4种:成员内部类、局部内部类、静态内部类、匿名内部类。 成员内部类 …...
对标世界一流|弹性应对“供应链不确定性常态化” ——快消与重资产行业的经验互鉴
1963年,气象学家洛伦兹提出的“蝴蝶效应”表示:“一只蝴蝶在巴西扇动翅膀,有可能会在美国德克萨斯州引起一场龙卷风”。本文希望通过提供快消行业的先进实践,帮助重资产企业从“蝴蝶扇动翅膀”之前就开始行动,避免“龙…...
【MPC|云储能】基于模型预测控制(MPC)的微电网调度优化的研究(matlab代码)
目录 1 主要内容 2 程序难点及问题说明 3 部分程序 4 下载链接 1 主要内容 该程序分为两部分,日前优化部分——该程序首先根据《电力系统云储能研究框架与基础模型》上面方法,根据每个居民的实际需要得到响应储能充放电功率,优化得到整体…...
796. 子矩阵的和(C++和Python3)——2023.5.6打卡
文章目录 QuestionIdeasCode Question 输入一个 n 行 m 列的整数矩阵,再输入 q 个询问,每个询问包含四个整数 x1,y1,x2,y2 ,表示一个子矩阵的左上角坐标和右下角坐标。 对于每个询问输出子矩阵中所有数的和。 输入格式 第一行包含三个整数…...
docker打包部署spring boot应用(mysql+jar+Nginx)
文章目录 一、基本准备二、mysql部署二、jar部署三、Nginx部署 一、基本准备 小唐拿的就是之前放置在我们服务器上的应用进行部署,主要就是mysql和jar还有Vue的部署。 目前已经有的是jar、已经打包好的vue 项目参考:小破站数据大屏可视化(…...
Golang-常见数据结构Slice
Slice slice 翻译成中文就是切片,它和数组(array)很类似,可以用下标的方式进行访问,如果越界,就会产生 panic。但是它比数组更灵活,可以自动地进行扩容。 了解 slice 的本质, 最简单的方法就是…...
操作系统——设备管理
0.关注博主有更多知识 操作系统入门知识合集 目录 1.设备管理概念 2.SPOOLing技术 1.设备管理概念 在计算中,除CPU、内存以外的所有设备统称为外设,即外部设备,例如鼠标、键盘、打印机、摄像头、磁盘、硬盘......那么这些只需要连接到计…...
图片分类:精细化分类,(Fine-Grained Categorization) 基于人的行为的精细化分类
文字大纲 简介数据集常用数据集方法1 : 强监督方法2 : 弱监督传统 ResNet EfficientNet 等Two Level Attention Model双线性网络 Bilinear CNN model参考文献和学习路径简介 细粒度图像识别 (fine-grained image recognition),即 精细化分类。 细粒度图像分类(Fine-Graine…...
Matlab2012a的图像处理工具箱的imshow函数
在处理图片文件时,除了使用matlab自带的image函数,还可以考虑用matlab的图像处理工具箱。这个工具箱提供了imshow和imtool两个函数,可实现图片的显示。 这两个函数都支持Handle Graphics体系结构,它们可创建图像对象,…...
Linux_红帽8学习笔记分享_10(SELinux管理与防火墙)
Linux_红帽8学习笔记分享_10(SELinux管理与防火墙) 文章目录 Linux_红帽8学习笔记分享_10(**SELinux管理与防火墙**)1.Linux系统的安全机制1.1 Filesystem1.2 Service1.3 Firewall1.4 SELinux 2.SElinux理论概述3.SElinux的配置文件3.1 SELINUX参数3.2 SELINUXTYPE参数 4.查看和…...
【资料分享】
文章目录 前言《408统考,真题&解析(2009-2021)》《Android 移动应用基础教程(Android Studio)(第2版)》黑马程序员 源代码《Hackers & Painters》--Paul Graham《数字电路与逻辑设计(第3版…...
NewBing 还无法访问的几个问题
大部分的AI自媒体都在说,Bing new已经向全世界开放了,我也凑一下这个热闹,用Edge浏览器打开,访问https://www.bing.com/new?ccus 想体验一下Bing new的效果,结果如下: 相信很多人都碰到了这个问题 此体验…...
将 Segment Anything 扩展到医学图像领域
文章目录 前言技术交流SAM 拆解分析从医学角度理解 SAM 的效用MedSAM实验总结 前言 SAM 是一种在自然图像分割方面取得成功的模型,但在医学图像分割方面表现不佳。MedSAM 首次尝试将 SAM 的成功扩展到医学图像,并成为用于分割各种医学图像的通用工具。为…...
模型参数、模型存储精度、参数与显存
模型参数量衡量单位 M:百万(Million) B:十亿(Billion) 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的,但是一个参数所表示多少字节不一定,需要看这个参数以什么…...
day52 ResNet18 CBAM
在深度学习的旅程中,我们不断探索如何提升模型的性能。今天,我将分享我在 ResNet18 模型中插入 CBAM(Convolutional Block Attention Module)模块,并采用分阶段微调策略的实践过程。通过这个过程,我不仅提升…...
服务器硬防的应用场景都有哪些?
服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式,避免服务器受到各种恶意攻击和网络威胁,那么,服务器硬防通常都会应用在哪些场景当中呢? 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...
什么是库存周转?如何用进销存系统提高库存周转率?
你可能听说过这样一句话: “利润不是赚出来的,是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业,很多企业看着销售不错,账上却没钱、利润也不见了,一翻库存才发现: 一堆卖不动的旧货…...
【项目实战】通过多模态+LangGraph实现PPT生成助手
PPT自动生成系统 基于LangGraph的PPT自动生成系统,可以将Markdown文档自动转换为PPT演示文稿。 功能特点 Markdown解析:自动解析Markdown文档结构PPT模板分析:分析PPT模板的布局和风格智能布局决策:匹配内容与合适的PPT布局自动…...
【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验
系列回顾: 在上一篇中,我们成功地为应用集成了数据库,并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了!但是,如果你仔细审视那些 API,会发现它们还很“粗糙”:有…...
Spring AI 入门:Java 开发者的生成式 AI 实践之路
一、Spring AI 简介 在人工智能技术快速迭代的今天,Spring AI 作为 Spring 生态系统的新生力量,正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务(如 OpenAI、Anthropic)的无缝对接&…...
自然语言处理——Transformer
自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效,它能挖掘数据中的时序信息以及语义信息,但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN,但是…...
让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...
CVE-2023-25194源码分析与漏洞复现(Kafka JNDI注入)
漏洞概述 漏洞名称:Apache Kafka Connect JNDI注入导致的远程代码执行漏洞 CVE编号:CVE-2023-25194 CVSS评分:8.8 影响版本:Apache Kafka 2.3.0 - 3.3.2 修复版本:≥ 3.4.0 漏洞类型:反序列化导致的远程代…...
