关于大模型对未来影响的一点看法
 人们总是高估了未来一到两年的变化,低估了未来十年的变革。 ---比尔盖茨   
 
近来OpenAI的GPT技术可以说在全球都带来了巨大的影响,也让大家看到了什么叫大力出奇迹。chatGPT和GPT4的能力给了大家很大的震撼,其流畅自如、逻辑清晰、出众的能力,给使用过的人都留下了深刻的印象,同时也让无数人对这项技术产生了担忧和畏惧,其中就包含即将踏入互联网行业的我。
起初在chatGPT刚出来的那段时间,我是抱着了解但未尝试的态度的,知道这项技术很先进,但是不知道其对未来的影响,或许是因为没有亲身去使用导致了对其能力的低估吧。后来其越来越火,GPT4相继问世,我使用之后的感受,我切身感受到了这一技术的变革性。

**gpt是个什么样的技术呢?**生成式预训练的模型,主要用在自然语言生成上,能够处理各种语种的输入和输出,如中文,英文等各种主流语言,不知道是否支持世界上所有有文字资料的语种。
目前gpt的技术主要应用在对话中,即人与计算机进行对话 — chatGPT,能够记忆多轮对话的内容,并结合上下文给出相应的答案,且生成的文本逻辑上,语法上都有很好的准确性。对话的内容不限,从生活常识,到百科,到文学,到各行各业的知识,学术界的,工业界的,都能给出不错的答案。目前关于垂直领域的知识,主要是关于计算机的,不知道其他工科的怎么样。但也并不是毫无缺点,生成的文本可能会有一些事实性错误,编造一些不存在的东西,不能确保准确性,有些泛泛而谈。
综合以上,可以对chatGPT做一个总结:一个拥有强大文本生成能力的模型,能够处理各种问题,理解语言中较复杂的语义,但也存在一些缺点。

现在发展到的gpt4,不仅可以处理文本,还具有了多模态的能力,能够理解图像,生成图像。或许以后能够输入输出更加的自由,可以是文本,语音,图像,视频等,输出亦然。
**关于未来的大模型。**可以沿着发展趋势展开一下想象,在未来的某天:大模型技术取得了更大的进步,其理解人类世界的能力愈发强大,不仅能够以显而易见的方式接收信息,如视、听,或许还能触摸,再加上对现实的理解,AI能做到的事或许和人类没有很大差距,甚至能够在某些方面(很多方面)超越人类。在工作中,你大部分时间在与AI系统打交道,你的上下游是AI系统,你接受AI的任务,解决一些AI暂时不能解决的问题后交给下游的AI来完成;生活中,可能有一个能力超强、且很懂你的AI助手、管家、甚至伴侣,管家能够接管你生活中的绝大部分安排,为你指定各种计划,替你规划、决策,为你的孩子辅导功课;商店里、饭店里,与你交流的可能是服务员。
要实现这样的未来,我们还有多远的,什么样的了路要走呢?
作为一名即将进入互联网行业的学生来说,AI的发展确实让我对自己的职业发展着实担忧了一把。未来AI技术的强大,一些方面的工作会很快被AI技术取代,目前已知的发展空间会被压缩,进而影响自己的工作待遇、职业发展方向。毕竟,未来的变动需要我们花费时间、精力去学习、去适应,还参杂很多不确定性。如果这真的是一场革命,那么肯定会有现在所不知的机会和机遇出现。干好当下的事很重要,但我现在能为未来做什么呢?接下来分析一下发模型对未来的行业的影响。
数据隐私一定是一个首要考虑的因素,因此很多商业化场景中会以安全,隐私为重要的考虑,可能会导致很多公司构建自己的大模型,不一定要达到最优的水平,但能在自己的垂直场景中达到一定的壁垒。各个公司如何构建自己的大模型呢?没有这个能力怎么办?虽然现在很多巨头都在往这个方向发展,但是真正做的好,能商业化的并没有那么多,市场还是一片蓝海。可以想到,这么多的巨头尚不能做的很好,其他的行业、公司有怎么做呢?当然,以后会有更多的公司能够做好,但是还是存在一个分水岭,岭以上的公司有能力做好自己的大模型,以下的公司不会自研或者说会另辟蹊径。有能力的公司可以把自己的大模型以服务的形式向外提供,并以此开展自己的产品。
在大模型掀起的这场革命(如果有)中,未来的软件会是什么样子的呢?现在的软件开发过程,通常需要人来沟通和理解需求,开发完成后进行迭代修改,并进行维护。如果AI能快速、准确地实现需求,或者小的需求块,那我们可能主要负责对需求的划分、细化、整理使其标准化(AI能理解的形式),具体的开发将由AI自动完成,最后再加以测试和人工检查和测试。这个时候可能很多低级(简单,容易被流程化)的开发会被取缔,程序员的工作重点更多放在整体流程的把控和分解上。那个时候,或许我们能开发出更大规模的软件,以更快的速度,类似于流浪地球2中MOSS自动生成操作系统。这个时候的程序员还需要具备手撕代码的能力吗?整体架构、流程的把控和理解或许是更为重要的能力,对技术的广度有更高的要求。
当然,并不是所有地方都会上大模型,但是很可能大家都会使用它。一种方式是对大模型的小型化,或者使小模型同样拥有足够的能力,一种是API的形式,把大模型作为一项服务,在有一种可能是二者的结合,在共有大模型的基础上产品有自己的私有模型。大模型的小型化,这也是业界和学界一直在做的事情,模型的量化、压缩、剪枝、蒸馏等,以及在各种硬件平台上适配。API的形式就不赘述了。我觉得目前还未出现,但是将来很有可能出现的就是第三种情况:共用大模型+私有模型。同样是处于对数据安全性考虑,也是维护自身产品壁垒。依赖大模型构建的产品,数据是其灵魂,也是其壁垒所在,也包括安全问题。如何在这样的约束下用好大模型?个人的一个想法:对大模型的拆解、分析,大模型的扩展能力,大模型与小模型(私有模型很有可能就是小模型)的融合,最好能够做到大模型是一个大软件,小模型则是一个插件,能够很好的借助大模型的能力。
最令我期待的是具身智能 — 我们接触的是具有实体的AI。当前AI技术在很多领域都有了很大的发展,CV、NLP、语音等,但更多的是以工具的形式出现在我们的生活中。但这些技术很多终究是没能达到流程与人类进行交互的能力,但现在我们看到希望了,GPT正在逐步实现(已经?)这一点。以上技术的融合是很有可能出现一个能够数字人的,能够具身,就看未来硬件和机器人技术的发展了。
希望未来不需要担心以上问题。

 再放几张《Bicentennial Man》的剧照,希望我以后也能有机器管家(当然不是安德鲁那样的🤣)。
 
 
 
 
关于gpt的几篇参考论文:
- Improving Language Understanding by Generative Pre-Training(GPT1);
- Language Models are Unsupervised Multitask Learners(GPT2);
- Language Models are Few-Shot Learners(GPT3);
- Training language models to follow instructions with human feedback(InstructGPT);
- GPT-4 Technical Report;
相关文章:
 
关于大模型对未来影响的一点看法
人们总是高估了未来一到两年的变化,低估了未来十年的变革。 ---比尔盖茨 近来OpenAI的GPT技术可以说在全球都带来了巨大的影响,也让大家看到了什么叫大力出奇迹。chatGPT和GPT4的能力给了大家很大的震撼,其流畅自如、逻辑清晰、出众的能力&am…...
Android - 约束布局 ConstraintLayout
一、概念 解决布局嵌套过多的问题,采用方向约束的方式对控件进行定位。 二、位置约束 2.1 位置 至少要保证水平和垂直方向都至少有一个约束才能确定控件的位置。 layout_constraintLeft_toLeftOf我的左边,与XXX左边对齐。layout_constraintLeft_toRight…...
 
Addictive Multiplicative in NN
特征交叉是特征工程中的重要环节,在以表格型(或结构化)数据为输入的建模中起到了很关键的作用。 特征交互的作用,一是尽可能挖掘对目标有效的模式、特征,二是具有较好的可解释性,三是能够将对数据的洞见引…...
 
LeetCode 1206. 实现跳表
不使用任何库函数,设计一个跳表。 跳表是在 O(log(n)) 时间内完成增加、删除、搜索操作的数据结构。跳表相比于树堆与红黑树,其功能与性能相当,并且跳表的代码长度相较下更短,其设计思想与链表相似。 例如,一个跳表包…...
 
离散数学_九章:关系(2)
9.2 n元关系及其应用 1、n元关系,关系的域,关系的阶2、数据库和关系 1. 数据库 2. 主键 3. 复合主键 3、n元关系的运算 1. 选择运算 (Select) 2. 投影运算 (Project) 3. 连接运算 (Join) n元关系:两个以上集合的元素间的关系 1、n元关系…...
[ubuntu][原创]通过apt方式去安装libnccl库
ubuntu18.04版本安装流程: wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/cuda-ubuntu1804.pin sudo mv cuda-ubuntu1804.pin /etc/apt/preferences.d/cuda-repository-pin-600 sudo apt-key adv --fetch-keys https://develo…...
 
YonLinker连接集成平台构建新一代产业互联根基
近日,由用友公司主办的“2023用友BIP技术大会“在用友产业园(北京)盛大召开,用友介绍了更懂企业业务的用友BIP-iuap平台,并发布了全面数智化能力体系,助力企业升级数智化底座,加强加速数智化推进…...
泛型的详解
泛型的理解和好处 首先我们先来看看泛型的好处 1)编译时,检查添加元素的类型,提高了安全性 2)减少了类型转换的次数,提高效率[说明] 不使用泛型 Dog -> Object -> Dog//放入到ArrayList 会先转成Object,在取出时&#x…...
 
用科技创造未来!流辰信息技术助您实现高效办公
随着社会的迅猛发展,科技的力量无处不见。它正在悄悄地改变整个社会,让人类变得进步和文明,让生活变得便捷和高效。在办公自动化强劲发展的今天,流辰信息技术让通信业、电网、汽车、物流等领域的企业实现了高效办公,数…...
基于R语言APSIM模型
随着数字农业和智慧农业的发展,基于过程的农业生产系统模型在模拟作物对气候变化的响应与适应、农田管理优化、作物品种和株型筛选、农田固碳和温室气体排放等领域扮演着越来越重要的作用。 APSIM (Agricultural Production Systems sIMulator)模型是世界知名的作物…...
 
块状链表实现BigString大字符串操作(golang)
前言 块状链表是介于链表和数组之间的数据结构,能够在 O ( n ) O(\sqrt{n}) O(n )时间内完成插入、删除、访问操作。 数据结构如图所示。假设最大容量为 n n n, 则它有一个长度为 s n s\sqrt{n} sn 的链表。链表中每个结点是一个长度为 2 n 2 \times \sqrt{…...
项目问题记录(持续更新)
1.在 yarn install的时候报 error achrinza/node-ipc9.2.2: The engine "node" is incompatible with this module. Expected version "8 || 10 || 12 || 14 || 16 || 17". Got "20.1.0" error Found incompatible module.需要执行 yarn config…...
 
Linux的进程
目录 一、进程占用的内存资源 二、进程的系统环境 三、进程一直在切换 四、父进程和子进程 五、进程状态 六、查看进程 1.ps -ef 列出所有进程 2.ps -lax 列出所有进程 3.ps aux列出所有进程 4.树形列出所有进程 七、作业(用来查看管理进程) …...
 
与其焦虑被 AI 取代或猜测前端是否已死, 不如看看 vertical-align 扎实你的基础!!!
与其焦虑被 AI 取代或猜测前端是否已死, 不如看看 vertical-align 扎实你的基础!!! vertical-align 设置 display 值为 inline, inline-block 和 table-cell 的元素竖直对齐方式. 从 line-height: normal 究竟是多高说起 我们先来看一段代码, 分析一下为什么第二行的行高, 也就…...
路由、交换机、集线器、DNS服务器、广域网/局域网、端口、MTU
前言:网络名词术语解析(自行阅读扫盲),推荐大家去读户根勤的《网络是怎样连接的》 路由(route): 数据包从源地址到目的地址所经过的路径,由一系列路由节点组成。某个路由节点为数据包选择投递方向的选路过程。 路由器工作原理 路…...
 
在全志V851S开发板上进行屏幕触摸适配
1.修改屏幕驱动 从ft6236 (删掉,不要保留),改为下面的 路径:/home/wells/tina-v853-open/tina-v853-open/device/config/chips/v851s/configs/lizard/board.dts(注意路径,要设置为自己的实际路…...
字符串拷贝时的内存重叠问题
字符串拷贝时的内存重叠问题 1.什么是内存重叠 拷贝的目的地址在源地址的范围内,有重叠。 如在写程序的过程中,我们用到的strcpy这个拷贝函数,在这个函数中我们定义一个目的地址,一个源地址,在拷贝的过程中如果内存重…...
 
告别PPT手残党!这6款AI神器,让你秒变PPT王者!
如果你是一个PPT手残党,每每制作PPT总是让你焦头烂额,那么你一定需要这篇幽默拉风的推广文案! 我向你保证,这篇文案将帮助你发现6款AI自动生成PPT的神器,让你告别PPT手残党的身份,成为一名PPT王者。 无论…...
JVM配置与优化
参考: JVM内存分区及作用(JDK8) https://blog.csdn.net/BigBug_500/article/details/104734957 java 进程占用系统内存过高分析 https://blog.csdn.net/fxh13579/article/details/104754340 Java之jvm和线程的内存 https://blog.csdn.ne…...
 
电力系统储能调峰、调频模型研究(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...
Vue记事本应用实现教程
文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展:显示创建时间8. 功能扩展:记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...
解锁数据库简洁之道:FastAPI与SQLModel实战指南
在构建现代Web应用程序时,与数据库的交互无疑是核心环节。虽然传统的数据库操作方式(如直接编写SQL语句与psycopg2交互)赋予了我们精细的控制权,但在面对日益复杂的业务逻辑和快速迭代的需求时,这种方式的开发效率和可…...
 
LeetCode - 394. 字符串解码
题目 394. 字符串解码 - 力扣(LeetCode) 思路 使用两个栈:一个存储重复次数,一个存储字符串 遍历输入字符串: 数字处理:遇到数字时,累积计算重复次数左括号处理:保存当前状态&a…...
2024年赣州旅游投资集团社会招聘笔试真
2024年赣州旅游投资集团社会招聘笔试真 题 ( 满 分 1 0 0 分 时 间 1 2 0 分 钟 ) 一、单选题(每题只有一个正确答案,答错、不答或多答均不得分) 1.纪要的特点不包括()。 A.概括重点 B.指导传达 C. 客观纪实 D.有言必录 【答案】: D 2.1864年,()预言了电磁波的存在,并指出…...
 
STM32标准库-DMA直接存储器存取
文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA(Direct Memory Access)直接存储器存取 DMA可以提供外设…...
 
高等数学(下)题型笔记(八)空间解析几何与向量代数
目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...
数据链路层的主要功能是什么
数据链路层(OSI模型第2层)的核心功能是在相邻网络节点(如交换机、主机)间提供可靠的数据帧传输服务,主要职责包括: 🔑 核心功能详解: 帧封装与解封装 封装: 将网络层下发…...
 
【Oracle】分区表
个人主页:Guiat 归属专栏:Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...
 
智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制
在数字化浪潮席卷全球的今天,数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具,在大规模数据获取中发挥着关键作用。然而,传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时,常出现数据质…...
Fabric V2.5 通用溯源系统——增加图片上传与下载功能
fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...
