当前位置: 首页 > news >正文

数据结构刷题(三十一):1049. 最后一块石头的重量 II、完全背包理论、518零钱兑换II

一、1049. 最后一块石头的重量 II

1.思路:01背包问题,其中dp[j]表示容量为j的背包,最多可以背最大重量为dp[j]

2.注意:递推公式dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);本题中的重量就是价值,所以第二个stone[i]表示价值的意思; 遍历顺序上仍然是先物品后背包

3.本题与分割等和子集类似,不同就在于最后return时,本题得到的target = sum / 2 因为是向下取整,所以sum - dp[target] 一定是大于等于dp[target]。

所以相撞也就是将target与sum - dp[target]作差即可。

class Solution {public int lastStoneWeightII(int[] stones) {if (stones.length == 0 || stones == null)return 0;int sum = 0;// 先求出这堆石头的和,以便得到背包能背的最大重量for (int stone : stones) {sum += stone;}int target = sum >> 1;int[] dp = new int[target + 1];// for循环, 先物品再背包for (int i = 0; i < stones.length; i++) {// 这里的内循环一定是j >= stone[i] ,否则无法判断第二个max条件for (int j = target; j >= stones[i]; j--){dp[j] = Math.max(dp[j], dp[j - stones[i]] + stones[i]);}}return sum - 2 * dp[target];}
}

二、完全背包

1.有N件物品和一个最多能背重量为W的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品都有无限个(也就是可以放入背包多次),求解将哪些物品装入背包里物品价值总和最大。

完全背包和01背包问题唯一不同的地方就是,每种物品有无限件

2.核心代码:区别于01背包的一维滚动数组,差别就是内循环

for(int i = 0; i < weight.size(); i++) { // 遍历物品for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);}
}

3.计算过程

 3.518. 零钱兑换 II

1.思路:完全背包。

2.递推公式:dp[j] += dp[j - nums[i]],表示填满j(包括j)这么大容积的包,有dp[j]种方法。

例如:dp[j],j 为5,

  • 已经有一个1(nums[i]) 的话,有 dp[4]种方法 凑成 容量为5的背包。
  • 已经有一个2(nums[i]) 的话,有 dp[3]种方法 凑成 容量为5的背包。
  • 已经有一个3(nums[i]) 的话,有 dp[2]中方法 凑成 容量为5的背包
  • 已经有一个4(nums[i]) 的话,有 dp[1]中方法 凑成 容量为5的背包
  • 已经有一个5 (nums[i])的话,有 dp[0]中方法 凑成 容量为5的背包

那么凑整dp[5]有多少方法呢,也就是把 所有的 dp[j - nums[i]] 累加起来。

3.注意:该题纯完全背包是能凑成总和就行,不用管怎么凑的,不需要管顺序。

4.代码:

class Solution {public int change(int amount, int[] coins) {//    dp[j] 表示:填满j(包括j)这么大容积的包,有dp[j]种方法int[] dp = new int[amount+1];//初始化dp数组,表示金额为0时只有一种情况,也就是什么都不装dp[0] = 1;for (int i = 0; i < coins.length; i++) {   // 零钱的种类数for (int j = coins[i]; j <= amount; j++){  // 组合方法dp[j] += dp[j - coins[i]];}}return dp[amount];}
}

相关文章:

数据结构刷题(三十一):1049. 最后一块石头的重量 II、完全背包理论、518零钱兑换II

一、1049. 最后一块石头的重量 II 1.思路&#xff1a;01背包问题&#xff0c;其中dp[j]表示容量为j的背包&#xff0c;最多可以背最大重量为dp[j]。 2.注意&#xff1a;递推公式dp[j] max(dp[j], dp[j - stones[i]] stones[i]);本题中的重量就是价值&#xff0c;所以第二个…...

opencv_c++学习(四)

图像在opencv中的存储方式 在上图中可以看出&#xff0c;在opencv中采用的是像素值来代表每一个像素三通道颜色的深浅。 Mat对象 Mat对象是在OpenCV2.0之后引进的图像数据结构、自动分配内存、不存在内存泄漏的问题&#xff0c;是面向对象的数据结构。分了两个部分&#xff0…...

基于AT89C51单片机的篮球计时记分设计

点击链接获取Keil源码与Project Backups仿真图: https://download.csdn.net/download/qq_64505944/87771065 源码获取 主要内容: 基于51单片机设计篮球计时计分器,结合单片机串行接口原理,用AT89C51设计一个篮球比赛计分计时器,能够通过数码管显示分数和比赛时间(并设有…...

并发编程-Day2

并发编程 1.共享模型-内存 共享变量在多线程间的<可见性>问题与多条指令执行时的<有序性>问题 1.1Java内存模型 JMM它定义了主存、工作内存抽象概念,底层对应着CPU寄存器、缓存、硬件内存CPU指令优化等. JMM体现在&#xff1a; 原子性-保证指令不会受到线程上…...

第1章 Nginx简介

基于 Nginx版本 1.14.2 &#xff0c;Tomcat版本 9.0.0 演示 第1章 Nginx简介 1.1 Nginx发展介绍 Nginx &#xff08;engine x&#xff09; 是一个高性能的Web服务器和反向代理服务器&#xff0c;也可以作为邮件代理服务器。 Nginx 特点是占有内存少&#xff0c;并发处理能力…...

一个.Net功能强大、易于使用、跨平台开源可视化图表

可视化图表运用是非常广泛的&#xff0c;比如BI系统、报表统计等。但是针对桌面应用的应用&#xff0c;很多报表都是收费的&#xff0c;今天给大家推荐一个免费.Net可视化开源的项目&#xff01; 项目简介 基于C#开发的功能强大、易于使用、跨平台高质量的可视化图表库&#…...

浅谈 ext2 文件系统的特点、优缺点以及使用场景

ext2&#xff08;Extended File System 2&#xff09;是 Linux 中最早的一种文件系统&#xff0c;它是 Linux 文件系统的基础&#xff0c;也被广泛用于其他类 Unix 系统中。下面是 ext2 文件系统的特点、优缺点以及使用场景&#xff1a; 特点&#xff1a; ext2 文件系统可以支…...

Map和Set数据结构和ES6模块化语法

Map和Set数据结构 ●ES6 新增的两种数据结构 ●共同的特点: 不接受重复数据 Set数据结构 ●是一个 类似于 数组的数据结构 ●按照索引排列的数据结构 创建 Set 数据结构 语法: var s new Set([ 数据1, 数据2, 数据3, ... ]) Set 数据结构的属性和方法 ●size 属性 ○语法: 数…...

10_Uboot启动流程_2

目录 _main函数详解 board_init_f函数详解 relocate_code函数详解 relocate_vectors函数详解 board_init_r 函数详解 _main函数详解 在上一章得知会执行_main函数_main函数定义在文件arch/arm/lib/crt0.S 中,函数内容如下: 第76行,设置sp指针为CONFIG_SYS_INIT_SP_ADDR,也…...

python+django汽车4S店零配件保养服务管理系统

汽车4S服务管理系统包括三种用户。管理员、普通员工、客户。 开发语言&#xff1a;Python 框架&#xff1a;django/flask Python版本&#xff1a;python3.7.7 数据库&#xff1a;mysql 数据库工具&#xff1a;Navicat 开发软件&#xff1a;PyCharm django 应用目录结构管…...

STM32F4的输出比较极性和PWM1,PWM2的关系

PWM 输出比较通道 在这里以通用定时器的通道1作为介绍。 如图&#xff0c;左边就是CNT计数器和CCR1第一路的捕获/比较寄存器&#xff0c;它俩进行比较&#xff0c;当CNT>CCR1, 或者CNTCCR1时&#xff0c;就会给输出模式控制器传送一个信号&#xff0c;然后输出模式控制器就…...

易优cms伪静态,EyouCms去除URL中的index.php

针对不同服务器、虚拟空间,运行PHP的环境也有所不同,目前主要分为:Nginx、apache、IIS以及其他服务器。下面分享如何去掉URL上的index.php字符,记得在管理后台清除缓存,对于一些ECS服务器可能要重启nginx等服务! 【Nginx服务器】 在原有的nginx重写文件里新增以下代码片…...

【自然语言处理】【大模型】CodeGeeX:用于代码生成的多语言预训练模型

CodeGeeX&#xff1a;用于代码生成的多语言预训练模型 《CodeGeeX: A Pre-Trained Model for Code Generation with Multilingual Evaluations on HumanEval-X》 论文地址&#xff1a;https://arxiv.org/pdf/2303.17568.pdf 相关博客 【自然语言处理】【大模型】CodeGen&#x…...

Open3D 非线性最小二乘拟合二维多项式曲线

目录 一、算法原理二、代码实现三、结果展示一、算法原理 多项式曲线表示为: p ( x ) = p 1 x n + p 2 x n...

kafka消息队列的两种模式

第一种模式&#xff1a; 点对点模式&#xff08;一对一&#xff0c;消费者主动拉取数据&#xff0c;消息收到后消息清除&#xff09; 1.消息生产者生产消息发送给队列&#xff0c;然后消费者从队列中取出并且消费消息 2.消息被消费以后&#xff0c;queue中不再有存储&#xff0…...

python语法复习

print&#xff1a;输出函数 print(520)效果&#xff1a;输出520. print(hello)效果&#xff1a;输出hello. print(1020)【效果&#xff1a;输出了:1020】注&#xff1a;“ ”在print里面是一个连接符。 print(1020)【效果&#xff1a;输出了30】注&#xff1a; 在此处…...

02-Java基础编程

Java基础编程 Java 基础语法Java 标识符变量变量的类型Java 基本数据类型基本数据类型转换 运算符常见运算符运算符的优先级 程序流程控制分支语句循环结构常用的循环结构循环的嵌套break 和 continue 关键字 数组一维数组多维数组的使用Arrays 工具类的使用数组中常见的异常 J…...

武忠祥老师每日一题||定积分基础训练(十)

已知f(x)连续 ∫ 0 x t f ( x − t ) d t 1 − cos ⁡ x , 求 ∫ 0 π 2 f ( x ) d x 的值。 \int_{0}^{x}tf(x-t)\,{\rm d}t1-\cos x,求\int_{0}^{\frac{\pi}{2}}f(x)dx的值。 ∫0x​tf(x−t)dt1−cosx,求∫02π​​f(x)dx的值。 已知一个关于f的变上限积分等式&#xff0c;&…...

C/C++趣味程序设计百例(41~50)

C/C语言经典、实用、趣味程序设计编程百例精解&#xff08;5&#xff09; 41.马克思手稿中的数学题 马克思手稿中有一道趣味数学问题&#xff1a;有30个人&#xff0c;其中有男人、女人和小孩&#xff0c;在一家饭馆吃饭花了50先令&#xff1b;每个男人花3先令&#xff0c;每个…...

论文阅读-2-DeepSMOTE Fusing Deep Learning and SMOTE for Imbalanced Data

文章目录 Abstract1. Introduction2. Learning From Imbalanced Data1. 数据级2. 算法级3. 集成方法 3. Deep Learning From Imbalanced Data基于深度神经网络的实例生成损失函数适应长尾识别 4. DeepSMOTEA. 动机B. 描述C. encoder-decoder框架D. 增强的损失函数E. 人工图像生…...

网络编程(Modbus进阶)

思维导图 Modbus RTU&#xff08;先学一点理论&#xff09; 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议&#xff0c;由 Modicon 公司&#xff08;现施耐德电气&#xff09;于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...

cf2117E

原题链接&#xff1a;https://codeforces.com/contest/2117/problem/E 题目背景&#xff1a; 给定两个数组a,b&#xff0c;可以执行多次以下操作&#xff1a;选择 i (1 < i < n - 1)&#xff0c;并设置 或&#xff0c;也可以在执行上述操作前执行一次删除任意 和 。求…...

css的定位(position)详解:相对定位 绝对定位 固定定位

在 CSS 中&#xff0c;元素的定位通过 position 属性控制&#xff0c;共有 5 种定位模式&#xff1a;static&#xff08;静态定位&#xff09;、relative&#xff08;相对定位&#xff09;、absolute&#xff08;绝对定位&#xff09;、fixed&#xff08;固定定位&#xff09;和…...

IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)

文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...

Redis数据倾斜问题解决

Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中&#xff0c;部分节点存储的数据量或访问量远高于其他节点&#xff0c;导致这些节点负载过高&#xff0c;影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...

精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南

精益数据分析&#xff08;97/126&#xff09;&#xff1a;邮件营销与用户参与度的关键指标优化指南 在数字化营销时代&#xff0c;邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天&#xff0c;我们将深入解析邮件打开率、网站可用性、页面参与时…...

Java + Spring Boot + Mybatis 实现批量插入

在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法&#xff1a;使用 MyBatis 的 <foreach> 标签和批处理模式&#xff08;ExecutorType.BATCH&#xff09;。 方法一&#xff1a;使用 XML 的 <foreach> 标签&#xff…...

Linux nano命令的基本使用

参考资料 GNU nanoを使いこなすnano基础 目录 一. 简介二. 文件打开2.1 普通方式打开文件2.2 只读方式打开文件 三. 文件查看3.1 打开文件时&#xff0c;显示行号3.2 翻页查看 四. 文件编辑4.1 Ctrl K 复制 和 Ctrl U 粘贴4.2 Alt/Esc U 撤回 五. 文件保存与退出5.1 Ctrl …...

【 java 虚拟机知识 第一篇 】

目录 1.内存模型 1.1.JVM内存模型的介绍 1.2.堆和栈的区别 1.3.栈的存储细节 1.4.堆的部分 1.5.程序计数器的作用 1.6.方法区的内容 1.7.字符串池 1.8.引用类型 1.9.内存泄漏与内存溢出 1.10.会出现内存溢出的结构 1.内存模型 1.1.JVM内存模型的介绍 内存模型主要分…...

windows系统MySQL安装文档

概览&#xff1a;本文讨论了MySQL的安装、使用过程中涉及的解压、配置、初始化、注册服务、启动、修改密码、登录、退出以及卸载等相关内容&#xff0c;为学习者提供全面的操作指导。关键要点包括&#xff1a; 解压 &#xff1a;下载完成后解压压缩包&#xff0c;得到MySQL 8.…...