当前位置: 首页 > news >正文

kafka消息队列的两种模式

第一种模式:
点对点模式(一对一,消费者主动拉取数据,消息收到后消息清除)
1.消息生产者生产消息发送给队列,然后消费者从队列中取出并且消费消息
2.消息被消费以后,queue中不再有存储,所有消息消费者不可能消费到已经被消费的消息
3.队列支持多个消费者,但对一个消息而言,只有一个消费者可以消费。
第二种模式:
发布订阅模式
1.消息生产者将消息发到topic,可以有多个topic.
2.同时有多个消息消费者订阅消费该消息,消费数据后不会被删除。
3.每个消费者相互独立,都可以消费到数据。

kafka中的一些名词:
主题:事件被组织持久的存储在主题中。kafka中的主题始终是多生产者和多订阅者:一个主题可以N个向其写入事件的生产者,以及订阅这些事件的N个消费者。主题中的事件可以根据需要随时读取雨传统的消息传递系统不同,事件被消费后不会被删除,相反,您可以通过每个主题的配置设置来定义kafka应该将你的事件保存多久,之后老的事件被丢弃。kafka适合长时间存储数据。

broker:主要功能就是持久化消息以及将消息队列中的消息从发送端传输到消费端。一个broker通常以服务器的形式出现,一台kafka服务器就是一个broker.一个集群由多个broker组成。一个broker可以容纳多个topic.如果kafka只有一个broker,就会出现单点故障。

一个分区只能被同一个消费这组中的消费者消费

启动
kafka-server-start.sh -daemon /opt/kafka/config/server.properties
生产者:kafka-console-producer.sh
消费者:kafka-console-consumer.sh
topic:kafka-topic.sh

相关文章:

kafka消息队列的两种模式

第一种模式: 点对点模式(一对一,消费者主动拉取数据,消息收到后消息清除) 1.消息生产者生产消息发送给队列,然后消费者从队列中取出并且消费消息 2.消息被消费以后,queue中不再有存储&#xff0…...

python语法复习

print:输出函数 print(520)效果:输出520. print(hello)效果:输出hello. print(1020)【效果:输出了:1020】注:“ ”在print里面是一个连接符。 print(1020)【效果:输出了30】注: 在此处…...

02-Java基础编程

Java基础编程 Java 基础语法Java 标识符变量变量的类型Java 基本数据类型基本数据类型转换 运算符常见运算符运算符的优先级 程序流程控制分支语句循环结构常用的循环结构循环的嵌套break 和 continue 关键字 数组一维数组多维数组的使用Arrays 工具类的使用数组中常见的异常 J…...

武忠祥老师每日一题||定积分基础训练(十)

已知f(x)连续 ∫ 0 x t f ( x − t ) d t 1 − cos ⁡ x , 求 ∫ 0 π 2 f ( x ) d x 的值。 \int_{0}^{x}tf(x-t)\,{\rm d}t1-\cos x,求\int_{0}^{\frac{\pi}{2}}f(x)dx的值。 ∫0x​tf(x−t)dt1−cosx,求∫02π​​f(x)dx的值。 已知一个关于f的变上限积分等式,&…...

C/C++趣味程序设计百例(41~50)

C/C语言经典、实用、趣味程序设计编程百例精解(5) 41.马克思手稿中的数学题 马克思手稿中有一道趣味数学问题:有30个人,其中有男人、女人和小孩,在一家饭馆吃饭花了50先令;每个男人花3先令,每个…...

论文阅读-2-DeepSMOTE Fusing Deep Learning and SMOTE for Imbalanced Data

文章目录 Abstract1. Introduction2. Learning From Imbalanced Data1. 数据级2. 算法级3. 集成方法 3. Deep Learning From Imbalanced Data基于深度神经网络的实例生成损失函数适应长尾识别 4. DeepSMOTEA. 动机B. 描述C. encoder-decoder框架D. 增强的损失函数E. 人工图像生…...

三种方法教你让模糊照片秒变高清图

现在随着数字相机和智能手机的普及,我们拍摄的照片数量越来越多,但是有些照片可能因为环境或技术等原因导致模糊不清,这时候我们就需要使用一些软件或工具来让照片变得清晰,以满足我们的需求。 下面介绍三种常用的照片变清晰的方…...

PyTorch深度学习实战 | 基于线性回归、决策树和SVM进行鸢尾花分类

鸢尾花数据集是机器学习领域非常经典的一个分类任务数据集。它的英文名称为Iris Data Set,使用sklearn库可以直接下载并导入该数据集。数据集总共包含150行数据,每一行数据由4个特征值及一个标签组成。标签为三种不同类别的鸢尾花,分别为&…...

服务端接口优化方案

一、背景 针对老项目,去年做了许多降本增效的事情,其中发现最多的就是接口耗时过长的问题,就集中搞了一次接口性能优化。本文将给小伙伴们分享一下接口优化的通用方案。 二、接口优化方案总结 1. 批处理 批量思想:批量操作数据…...

【并发基础】Happens-Before模型详解

目录 一、Happens-Before模型简介 二、组成Happens-Before模型的八种规则 2.1 程序顺序规则(as-if-serial语义) 2.2 传递性规则 2.3 volatile变量规则 2.4 监视器锁规则 2.5 start规则 2.6 Join规则 一、Happens-Before模型简介 除了显示引用vo…...

Kubernetes系列---Kubernetes 理论知识 | 初识

Kubernetes系列---Kubernetes 理论知识 | 初识 1.K8s 是什么?2.K8s 特性3.小拓展(业务升级)4.K8s 集群架构与组件①架构拓扑图:②Master 组件③Node 组件 五 K8s 核心概念六 官方提供的三种部署方式总结 1.K8s 是什么&#xff1f…...

KingbaseES 原生XML系列三--XML数据查询函数

KingbaseES 原生XML系列三--XML数据查询函数(EXTRACT,EXTRACTVALUE,EXISTSNODE,XPATH,XPATH_EXISTS,XMLEXISTS) XML的简单使其易于在任何应用程序中读写数据,这使XML很快成为数据交换的一种公共语言。在不同平台下产生的信息,可以很容易加载XML数据到程序…...

【51单片机】点亮一个LED灯(看开发板原理图十分重要)

🎊专栏【51单片机】 🍔喜欢的诗句:更喜岷山千里雪 三军过后尽开颜。 🎆音乐分享【The Right Path】 🥰大一同学小吉,欢迎并且感谢大家指出我的问题🥰 目录 🍔基础内容 &#x1f3f3…...

数据可视化工具 - ECharts以及柱状图的编写

1 快速上手 引入echarts 插件文件到html页面中 <head><meta charset"utf-8"/><title>ECharts</title><!-- step1 引入刚刚下载的 ECharts 文件 --><script src"./echarts.js"></script> </head>准备一个…...

【AI绘画】——Midjourney关键词格式解析(常用参数分享)

目前在AI绘画模型中&#xff0c;Midjourney的效果是公认的top级别&#xff0c;但同时也是相对较难使用的&#xff0c;对小白来说比较难上手&#xff0c;主要就在于Mj没有webui&#xff0c;不能选择参数&#xff0c;怎么找到这些隐藏参数并且触发它是用好Mj的第一步。 今天就来…...

操作符知识点大全(简洁,全面,含使用场景,演示,代码)

目录 一.算术操作符 1.要点&#xff1a; 二.负数原码&#xff0c;反码&#xff0c;补码的互推 1.按位取反操作符&#xff1a;~&#xff08;二进制位&#xff09; 2.原反补互推演示 三.进制位的表示 1.不同进制位的特征&#xff1a; 2.二进制位表示 3.整型的二进制表…...

华工研究生语音课

这门课讲啥 语音蕴含的信息、语音识别的目的 语音的准平稳性、分帧、预加重、时域特征分析&#xff08;能量和过零率&#xff09;、端点检测&#xff08;双门限法&#xff09; 语音的基频及检测&#xff08;主要是自相关法、野点的处理&#xff09; 声音的产生过程&#xf…...

KingbaseES 原生XML系列二 -- XML数据操作函数

KingbaseES 原生XML系列二--XML数据操作函数(DELETEXML,APPENDCHILDXML,INSERTCHILDXML,INSERTCHILDXMLAFTER,INSERTCHILDXMLBEFORE,INSERTXMLAFTER,INSERTXMLBEFORE,UPDATEXML) XML的简单使其易于在任何应用程序中读写数据&#xff0c;这使XML很快成为数据交换的一种公共语言。…...

【Flink】DataStream API使用之源算子(Source)

源算子 创建环境之后&#xff0c;就可以构建数据的业务处理逻辑了&#xff0c;Flink可以从各种来源获取数据&#xff0c;然后构建DataStream进项转换。一般将数据的输入来源称为数据源&#xff08;data source&#xff09;&#xff0c;而读取数据的算子就叫做源算子&#xff08…...

树莓派硬件介绍及配件选择

目录 树莓派Datasheet下载地址&#xff1a; Raspberry 4B 外观图&#xff1a; 技术规格书&#xff1a; 性能介绍&#xff1a; 树莓派配件选用 电源的选用&#xff1a; 树莓派外壳选用&#xff1a; 内存卡/U盘选用 树莓派Datasheet下载地址&#xff1a; Raspberry Pi …...

ssc377d修改flash分区大小

1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...

无法与IP建立连接,未能下载VSCode服务器

如题&#xff0c;在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈&#xff0c;发现是VSCode版本自动更新惹的祸&#xff01;&#xff01;&#xff01; 在VSCode的帮助->关于这里发现前几天VSCode自动更新了&#xff0c;我的版本号变成了1.100.3 才导致了远程连接出…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院挂号小程序

一、开发准备 ​​环境搭建​​&#xff1a; 安装DevEco Studio 3.0或更高版本配置HarmonyOS SDK申请开发者账号 ​​项目创建​​&#xff1a; File > New > Create Project > Application (选择"Empty Ability") 二、核心功能实现 1. 医院科室展示 /…...

Golang dig框架与GraphQL的完美结合

将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用&#xff0c;可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器&#xff0c;能够帮助开发者更好地管理复杂的依赖关系&#xff0c;而 GraphQL 则是一种用于 API 的查询语言&#xff0c;能够提…...

P3 QT项目----记事本(3.8)

3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...

python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)

更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...

Neo4j 集群管理:原理、技术与最佳实践深度解析

Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...

Ascend NPU上适配Step-Audio模型

1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统&#xff0c;支持多语言对话&#xff08;如 中文&#xff0c;英文&#xff0c;日语&#xff09;&#xff0c;语音情感&#xff08;如 开心&#xff0c;悲伤&#xff09;&#x…...

mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包

文章目录 现象&#xff1a;mysql已经安装&#xff0c;但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时&#xff0c;可能是因为以下几个原因&#xff1a;1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...

DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”

目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...