武忠祥老师每日一题||定积分基础训练(十)
已知f(x)连续 ∫ 0 x t f ( x − t ) d t = 1 − cos x , 求 ∫ 0 π 2 f ( x ) d x 的值。 \int_{0}^{x}tf(x-t)\,{\rm d}t=1-\cos x,求\int_{0}^{\frac{\pi}{2}}f(x)dx的值。 ∫0xtf(x−t)dt=1−cosx,求∫02πf(x)dx的值。
已知一个关于f的变上限积分等式,(变上限积分函数的特点,求导比较容易)所以可以等式两边同时求导。
但是对于这个题目,不可以直接求导。在变上限函数中,t是积分变量,而x不是。
对于这类题目,有一个通用方法----做变量代换,把x-t换成变量u。
❗❗❗变量代换注意换上下限,下面容易出错!
令u=x-t <=> t=x-u
d t = − d u , 但是当发生变量代换时: t = 0 , u = 0 ; t = x , u = − x dt=-du,但是当发生变量代换时:t=0,u=0;\\t=x,u=-x dt=−du,但是当发生变量代换时:t=0,u=0;t=x,u=−x
这时原式 = − ∫ 0 − x ( x − u ) f ( u ) d u = ∫ 0 x ( x − u ) f ( u ) d u 这时原式=-\int_{0}^{-x}(x-u)f(u)du=\int_{0}^{x}(x-u)f(u)du 这时原式=−∫0−x(x−u)f(u)du=∫0x(x−u)f(u)du
原式= ∫ 0 x ( x − u ) f ( u ) d u \int_{0}^{x}(x-u)f(u)du ∫0x(x−u)f(u)du
= x ∫ 0 x f ( u ) d u − ∫ 0 x u f ( u ) d u =x\int_{0}^{x}f(u)du-\int_{0}^{x}uf(u)du =x∫0xf(u)du−∫0xuf(u)du
对等式两边同时求导得,
∫ 0 x f ( u ) d u + x f ( x ) − x f ( x ) = sin x \int_{0}^{x}f(u)du+xf(x)-xf(x)=\sin x ∫0xf(u)du+xf(x)−xf(x)=sinx
即 ∫ 0 x f ( u ) d u = sin x \int_{0}^{x}f(u)du=\sin x ∫0xf(u)du=sinx
这时对等式两边再次同时求导,得
f ( x ) = cos x f(x)=\cos x f(x)=cosx
这时,题目要求的
∫ 0 π 2 f ( x ) d x \int_{0}^{\frac{\pi}{2}}f(x)dx ∫02πf(x)dx
= ∫ 0 π 2 cos x d x =\int_{0}^{\frac{\pi}{2}}\cos x dx =∫02πcosxdx
= sin x ∣ 0 π 2 = 1 =\sin x |_{0}^{\frac{\pi}{2}}=1 =sinx∣02π=1
相关文章:
武忠祥老师每日一题||定积分基础训练(十)
已知f(x)连续 ∫ 0 x t f ( x − t ) d t 1 − cos x , 求 ∫ 0 π 2 f ( x ) d x 的值。 \int_{0}^{x}tf(x-t)\,{\rm d}t1-\cos x,求\int_{0}^{\frac{\pi}{2}}f(x)dx的值。 ∫0xtf(x−t)dt1−cosx,求∫02πf(x)dx的值。 已知一个关于f的变上限积分等式,&…...
C/C++趣味程序设计百例(41~50)
C/C语言经典、实用、趣味程序设计编程百例精解(5) 41.马克思手稿中的数学题 马克思手稿中有一道趣味数学问题:有30个人,其中有男人、女人和小孩,在一家饭馆吃饭花了50先令;每个男人花3先令,每个…...
论文阅读-2-DeepSMOTE Fusing Deep Learning and SMOTE for Imbalanced Data
文章目录 Abstract1. Introduction2. Learning From Imbalanced Data1. 数据级2. 算法级3. 集成方法 3. Deep Learning From Imbalanced Data基于深度神经网络的实例生成损失函数适应长尾识别 4. DeepSMOTEA. 动机B. 描述C. encoder-decoder框架D. 增强的损失函数E. 人工图像生…...
三种方法教你让模糊照片秒变高清图
现在随着数字相机和智能手机的普及,我们拍摄的照片数量越来越多,但是有些照片可能因为环境或技术等原因导致模糊不清,这时候我们就需要使用一些软件或工具来让照片变得清晰,以满足我们的需求。 下面介绍三种常用的照片变清晰的方…...
PyTorch深度学习实战 | 基于线性回归、决策树和SVM进行鸢尾花分类
鸢尾花数据集是机器学习领域非常经典的一个分类任务数据集。它的英文名称为Iris Data Set,使用sklearn库可以直接下载并导入该数据集。数据集总共包含150行数据,每一行数据由4个特征值及一个标签组成。标签为三种不同类别的鸢尾花,分别为&…...
服务端接口优化方案
一、背景 针对老项目,去年做了许多降本增效的事情,其中发现最多的就是接口耗时过长的问题,就集中搞了一次接口性能优化。本文将给小伙伴们分享一下接口优化的通用方案。 二、接口优化方案总结 1. 批处理 批量思想:批量操作数据…...
【并发基础】Happens-Before模型详解
目录 一、Happens-Before模型简介 二、组成Happens-Before模型的八种规则 2.1 程序顺序规则(as-if-serial语义) 2.2 传递性规则 2.3 volatile变量规则 2.4 监视器锁规则 2.5 start规则 2.6 Join规则 一、Happens-Before模型简介 除了显示引用vo…...
Kubernetes系列---Kubernetes 理论知识 | 初识
Kubernetes系列---Kubernetes 理论知识 | 初识 1.K8s 是什么?2.K8s 特性3.小拓展(业务升级)4.K8s 集群架构与组件①架构拓扑图:②Master 组件③Node 组件 五 K8s 核心概念六 官方提供的三种部署方式总结 1.K8s 是什么?…...
KingbaseES 原生XML系列三--XML数据查询函数
KingbaseES 原生XML系列三--XML数据查询函数(EXTRACT,EXTRACTVALUE,EXISTSNODE,XPATH,XPATH_EXISTS,XMLEXISTS) XML的简单使其易于在任何应用程序中读写数据,这使XML很快成为数据交换的一种公共语言。在不同平台下产生的信息,可以很容易加载XML数据到程序…...
【51单片机】点亮一个LED灯(看开发板原理图十分重要)
🎊专栏【51单片机】 🍔喜欢的诗句:更喜岷山千里雪 三军过后尽开颜。 🎆音乐分享【The Right Path】 🥰大一同学小吉,欢迎并且感谢大家指出我的问题🥰 目录 🍔基础内容 🏳…...
数据可视化工具 - ECharts以及柱状图的编写
1 快速上手 引入echarts 插件文件到html页面中 <head><meta charset"utf-8"/><title>ECharts</title><!-- step1 引入刚刚下载的 ECharts 文件 --><script src"./echarts.js"></script> </head>准备一个…...
【AI绘画】——Midjourney关键词格式解析(常用参数分享)
目前在AI绘画模型中,Midjourney的效果是公认的top级别,但同时也是相对较难使用的,对小白来说比较难上手,主要就在于Mj没有webui,不能选择参数,怎么找到这些隐藏参数并且触发它是用好Mj的第一步。 今天就来…...
操作符知识点大全(简洁,全面,含使用场景,演示,代码)
目录 一.算术操作符 1.要点: 二.负数原码,反码,补码的互推 1.按位取反操作符:~(二进制位) 2.原反补互推演示 三.进制位的表示 1.不同进制位的特征: 2.二进制位表示 3.整型的二进制表…...
华工研究生语音课
这门课讲啥 语音蕴含的信息、语音识别的目的 语音的准平稳性、分帧、预加重、时域特征分析(能量和过零率)、端点检测(双门限法) 语音的基频及检测(主要是自相关法、野点的处理) 声音的产生过程…...
KingbaseES 原生XML系列二 -- XML数据操作函数
KingbaseES 原生XML系列二--XML数据操作函数(DELETEXML,APPENDCHILDXML,INSERTCHILDXML,INSERTCHILDXMLAFTER,INSERTCHILDXMLBEFORE,INSERTXMLAFTER,INSERTXMLBEFORE,UPDATEXML) XML的简单使其易于在任何应用程序中读写数据,这使XML很快成为数据交换的一种公共语言。…...
【Flink】DataStream API使用之源算子(Source)
源算子 创建环境之后,就可以构建数据的业务处理逻辑了,Flink可以从各种来源获取数据,然后构建DataStream进项转换。一般将数据的输入来源称为数据源(data source),而读取数据的算子就叫做源算子(…...
树莓派硬件介绍及配件选择
目录 树莓派Datasheet下载地址: Raspberry 4B 外观图: 技术规格书: 性能介绍: 树莓派配件选用 电源的选用: 树莓派外壳选用: 内存卡/U盘选用 树莓派Datasheet下载地址: Raspberry Pi …...
O2OA (翱途) 平台 V8.0 发布新增数据台账能力
亲爱的小伙伴们,O2OA (翱途) 平台开发团队经过几个月的持续努力,实现功能的新增、优化以及问题的修复。2023 年度 V8.0 版本已正式发布。欢迎大家到 O2OA 的官网上下载进行体验,也希望大家在藕粉社区里多提宝贵建议。本篇我们先为大家介绍应用…...
数控解锁怎么解 数控系统解锁解密
Amazon Fargate 在中国区正式落地,因 数控解锁使用 Serverless 架构,更加适合对性能要求不敏感的服务使用,Pyroscope 是一款基于 Golang 开发的应用程序性能分析工具,Pyroscope 的服务端为无状态服务且性能要求不敏感,…...
3.0 响应式系统的设计与实现
1、Proxy代理对象 Proxy用于对一个普通对象代理,实现对象的拦截和自定义,如拦截其赋值、枚举、函数调用等。里面包含了很多组捕获器(trap),在代理对象执行相应的操作时捕获,然后在内部实现自定义。 const…...
从WWDC看苹果产品发展的规律
WWDC 是苹果公司一年一度面向全球开发者的盛会,其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具,对过去十年 WWDC 主题演讲内容进行了系统化分析,形成了这份…...
python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)
更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...
论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)
笔记整理:刘治强,浙江大学硕士生,研究方向为知识图谱表示学习,大语言模型 论文链接:http://arxiv.org/abs/2407.16127 发表会议:ISWC 2024 1. 动机 传统的知识图谱补全(KGC)模型通过…...
unix/linux,sudo,其发展历程详细时间线、由来、历史背景
sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...
Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!
一、引言 在数据驱动的背景下,知识图谱凭借其高效的信息组织能力,正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合,探讨知识图谱开发的实现细节,帮助读者掌握该技术栈在实际项目中的落地方法。 …...
云原生安全实战:API网关Kong的鉴权与限流详解
🔥「炎码工坊」技术弹药已装填! 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、基础概念 1. API网关(API Gateway) API网关是微服务架构中的核心组件,负责统一管理所有API的流量入口。它像一座…...
c# 局部函数 定义、功能与示例
C# 局部函数:定义、功能与示例 1. 定义与功能 局部函数(Local Function)是嵌套在另一个方法内部的私有方法,仅在包含它的方法内可见。 • 作用:封装仅用于当前方法的逻辑,避免污染类作用域,提升…...
【iOS】 Block再学习
iOS Block再学习 文章目录 iOS Block再学习前言Block的三种类型__ NSGlobalBlock____ NSMallocBlock____ NSStackBlock__小结 Block底层分析Block的结构捕获自由变量捕获全局(静态)变量捕获静态变量__block修饰符forwarding指针 Block的copy时机block作为函数返回值将block赋给…...
STM32标准库-ADC数模转换器
文章目录 一、ADC1.1简介1. 2逐次逼近型ADC1.3ADC框图1.4ADC基本结构1.4.1 信号 “上车点”:输入模块(GPIO、温度、V_REFINT)1.4.2 信号 “调度站”:多路开关1.4.3 信号 “加工厂”:ADC 转换器(规则组 注入…...
【技巧】dify前端源代码修改第一弹-增加tab页
回到目录 【技巧】dify前端源代码修改第一弹-增加tab页 尝试修改dify的前端源代码,在知识库增加一个tab页"HELLO WORLD",完成后的效果如下 [gif01] 1. 前端代码进入调试模式 参考 【部署】win10的wsl环境下启动dify的web前端服务 启动调试…...
