[PyTorch][chapter 34][池化层与采样]
前言:
这里主要讲解一下卷积神经网络中的池化层与采样
目录
- DownSample
- Max pooling
- avg pooling
- upsample
- ReLu
1: DownSample
下采样,间隔一定行或者列进行采样,达到降维效果
早期LeNet-5 就采样该采样方式。
LeNet-5
2 Max pooling
最大值采样
取滑动窗口内的最大值,做采样值,达到降维效果
AlexNet 采用该种采样方式,取窗口内最大值或平均值
如最后一个窗口
max(7,6,4,2)=7
PyTorch nn 模块提供了API ,注意输入必须是3维或者以上的张量
至少是如下格式(channel,width, height)
# -*- coding: utf-8 -*-
"""
Created on Tue May 16 15:53:25 2023@author: chengxf2
"""import torch
import torch.nn as nndef run():data = torch.arange(0, 16.0).view(1,4,4)print("\n input:\n",data)layer = nn.MaxPool2d(2,stride=2)pool = layer(data)print("\n pool \n",pool)run()
3 avg pooling
平均采样
取滑动窗口内的平均值,做采样值,达到降维效果
PyTorch 里面提供了采样函数 F
import torch.nn.functional as F
m = nn.AvgPool2d((2, 2), stride=(2, 2))
4 upsample
上采样,对应的API 函数如下
torch.nn.functional.interpolate(input,size=None,
scale_factor=None,mode='nearest',
align_corners=None,
recompute_scale_factor=None)
功能:
利用插值方法,对输入的张量数组进行上\下采样操作,换句话说就是科学合理地改变数组的尺寸大小,尽量保持数据完整。
参数
input(Tensor) | 需要进行采样处理的数组 |
size(int或序列) | 输出空间的大小 |
scale_factor | 空间大小的乘数 |
mode(str) | 用于采样的算法。'nearest'| 'linear'| 'bilinear'| 'bicubic'| 'trilinear'| 'area'。默认:'nearest' |
align_corners(bool) | 在几何上,我们将输入和输出的像素视为正方形而不是点。如果设置为True,则输入和输出张量按其角像素的中心点对齐,保留角像素处的值。如果设置为False,则输入和输出张量通过其角像素的角点对齐,并且插值使用边缘值填充用于边界外值,使此操作在保持不变时独立于输入大小scale_factor。 |
recompute_scale_facto(bool) | 重新计算用于插值计算的 scale_factor。当scale_factor作为参数传递时,它用于计算output_size。如果recompute_scale_factor的False或没有指定,传入的scale_factor将在插值计算中使用。否则,将根据用于插值计算的输出和输入大小计算新的scale_factor(即,如果计算的output_size显式传入,则计算将相同 )。注意当scale_factor 是浮点数,由于舍入和精度问题,重新计算的 scale_factor 可能与传入的不同。 |
import torch.nn.functional as F
import torcha=torch.arange(12,dtype=torch.float32).reshape(1,2,2,3)
b=F.interpolate(a,size=(4,4),mode='bilinear')
# 这里的(4,4)指的是将后两个维度放缩成4*4的大小
print(a)
print(b)
print('原数组尺寸:',a.shape)
print('size采样尺寸:',b.shape)
例2:
输入 x [1,16,7,7] [img_number,channel, width,height]
通过插值后只会更改为其长和宽
5 ReLu
卷积神经网络基本组成部分如下,因为经过
conv2d, batchNorm,Pooling 操作后,图像像素值可能是负的。
图像的像素值不能为负的的,所以正常要加个ReLu 函数
relu(x)= max(0,x)
参考:
F.interpolate——数组采样操作_视觉萌新、的博客-CSDN博客
课时66 池化层与采样_哔哩哔哩_bilibili
相关文章:

[PyTorch][chapter 34][池化层与采样]
前言: 这里主要讲解一下卷积神经网络中的池化层与采样 目录 DownSampleMax poolingavg poolingupsampleReLu 1: DownSample 下采样,间隔一定行或者列进行采样,达到降维效果 早期LeNet-5 就采样该采样方式。 LeNet-5 2 Max pooling 最大值采样…...

Java进阶-字符串的使用
1.API 1.1API概述 什么是API API (Application Programming Interface) :应用程序编程接口 java中的API 指的就是 JDK 中提供的各种功能的 Java类,这些类将底层的实现封装了起来,我们不需要关心这些类是如何实现的,只需要…...

接口自动化框架对比 | 质量工程
一、前言 自动化测试是把将手工驱动的测试行为转化为机器自动执行,通常操作是在某一框架下进行代码编写,实现用例自动发现与执行,托管在CI/CD平台上,通过条件触发或手工触发,进行回归测试&线上监控,代替…...

谷歌浏览器network error解决方法
很多用户在使用谷歌浏览器时候会出现network error网页提示,很多用户不知道该如何处理这一问题,其实解决方法不止一种,小编整理了两种谷歌浏览器network error解决方法,一起来看看吧~ 谷歌浏览器network error解决方法࿱…...

自动化测试如何做?接口自动化测试框架必备的9个功能,测试老鸟总结...
目录:导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结(尾部小惊喜) 前言 当你准备使用一个…...

ANR原理篇 - ANR原理总览
系列文章目录 提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加 例如:第一章 Python 机器学习入门之pandas的使用 文章目录 系列文章目录前言ANR流程概览ANR触发机制一、service超时机制二、broadcast超时机制三、provider超…...

新版Mamba体验超快的软件安装
在一文掌握Conda软件安装:虚拟环境、软件通道、加速solving、跨服务器迁移中详细介绍的conda的基本使用和遇到问题的解决方式,也提到了mamba作为一个替代工具,可以很好的加速conda的solving environemnt过程。但有时也会遇到一个很尴尬的问题…...

LDAP配置与安装
LDAP配置与安装 一、安装LDAP1、安装OpenLDAP及相关依赖包2、查看OpenLDAP版本3、配置OpenLDAP数据库4、设置OpenLDAP的管理员密码5、修改配置文件5.1. 修改{2}hdb.ldif文件5.2. 修改{1}monitor.ldif文件5.3. 修改{-1}frontend.ldif文件 6、验证LDAP的基本配置7、修改LDAP文件权…...

1-Linux环境安装JDK
Linux环境安装JDK 准备: ① Linux 环境 本文中Linux环境为 CentOS Linux 7 可使用以下命令查询 linux 系统版本: hostnamectl② 准备JDK包 进入官网 https://www.oracle.com/java/technologies/downloads/#java17下载对应jdk包 此处使用以前下载的旧…...

通胀数据回落助金价小幅回升
现货黄金窄幅震荡,目前交投于2032.92美元/盎司附近。隔夜美国通胀数据弱于市场预期,市场对美联储6月份加息预期降温,美元指数走弱,金价一度冲高至2050关口附近,不过,随后金价回吐全部涨幅,并一度…...

正则表达式的基本语法以及技巧和示例
正则表达式(Regular Expression)是一种强大的文本模式匹配工具,它使用特定的语法规则来描述和匹配字符串。在实际应用中,正则表达式可以用于搜索、替换、验证和分割文本数据。本文将详细解释正则表达式的语法和常用的使用示例。 …...

蓝牙耳机怎么挑选?小编分享2023畅销蓝牙耳机排行榜
蓝牙耳机怎么挑选?蓝牙、音质、续航、佩戴是蓝牙耳机选购时最重要的四大维度,这几年随着技术的成熟体验有了很大改善,但挑选的时候仍然要仔细对比,不然容易踩雷。小编根据销量整理了蓝牙耳机排行榜,一起看看最受消费者…...

Linux快照太有趣了!
1.首先介绍一下什么是Linux快照 VMware 的菜单栏中有虚拟机快照这个选项,形象来说快照就相当于一个备份文件,记录的是虚拟机运行到某一节点时的状态,在虚拟机的使用过程中如果发生了意外,比如系统崩溃或系统异常,此时…...

【改进粒子群优化算法】自适应惯性权重粒子群算法(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...

ROS 下 激光扫描仪 YDLidar-G4 使用
环境配置: ubuntu20.04 LTS ROS noetic 编程工具:vs code,远程通过ssh访问 扫描仪:YDLidar-G4 YDLidar驱动: YDLidar SDK YDLidar ROS 功能包 此环境包含树莓派,以下过程在树莓派3B上测试通过,…...

智能边缘:数字化时代的关键战略之一
随着物联网、云计算和人工智能等技术的快速发展,智能边缘已经成为了许多企业和组织中的重要部分。智能边缘旨在将物联网设备、应用程序和数据存储集成到一个统一的、移动的计算环境中,以提高效率、降低成本并增强数据安全性。在本文中,我们将…...

EasyRecovery16中文最新版电脑数据恢复软件下载使用教程
EasyRecovery如果需要使用它来恢复数据,请注意,尤其是当需要恢复的数据文件非常重要时,建议使用软件EasyRecovery以保障数据安全。共有三个版本,分别是个人版、专业版、企业版,这三种都可以免费下载并使用,…...

什么是鉴权?这些postman鉴权方式你又知道多少?
一、什么是鉴权? 鉴权也就是身份认证,就是验证您是否有权限从服务器访问或操作相关数据。发送请求时,通常必须包含相应的检验参数以确保请求具有访问权限并返回所需数据。通俗的讲就是一个门禁,您想要进入室内,必须通过…...

最新的经典mysql面试题及答案
互联网产品必然是需要有架构的,架构包含接入层、储蓄层、逻辑处理等等,其中存储层承载着数据落地和持久化的任务,同时给逻辑处理层提供数据查询功能支持。而一提到储蓄层必然就要说数据库了,对于数据库的掌握也是软件工程师面试时…...

算法修炼之练气篇——练气十九层
博主:命运之光 专栏:算法修炼之练气篇 前言:每天练习五道题,炼气篇大概会练习200道题左右,题目有C语言网上的题,也有洛谷上面的题,题目简单适合新手入门。(代码都是命运之光自己写的…...

记录一次Windows7操作系统渗透测试
#本文档仅用于实验,请勿用来使用恶意攻击! 《中华人民共和国网络安全法》中,恶意破坏计算机信息系统罪在第二十七条被明确规定,规定内容为: 第二十七条 任何单位和个人不得为达到破坏计算机信息系统安全的目的&#x…...

承诺协议:定义 构造
文章目录 安全性定义方案构造基于 OWP 存在性基于 DL 假设基于 OWF 存在性基于 DDH 假设 总结 安全性定义 承诺协议(Commitment Scheme)是一个两阶段的两方协议。一方是承诺者(Committer) C C C,另一方是接收者&#…...

二、easyUI中的layout(布局)组件
1.layout(布局)组件的概述 布局容器有5个区域:北、南、东、西和中间。中间区域面板是必须的,边缘的面板都是可选的。每个边缘区域面板都可以通过拖拽其边框改变大小,也可以点击折叠按钮将面板折叠起来。布局可以进行嵌…...

MySQL---聚合函数、字符串函数、数学函数、日期函数
1. 聚合函数 数据准备: create database mydb4; use mydb4;create table emp(emp_id int primary key auto_increment comment 编号,emp_name char(20) not null default comment 姓名,salary decimal(10,2) not null default 0 comment 工资,department char(20…...

边缘计算盒子有哪些?边缘计算应用场景
边缘计算(Edge Computing)是一种分布式计算模型,旨在将数据处理和计算功能从中心数据中心移到数据源附近的边缘设备上。它的目标是在接近数据生成的地方进行实时数据处理和分析,减少数据传输延迟和网络拥塞,提高应用程…...

Linux内核(十四)Input 子系统详解 IV —— 配对的input设备与input事件处理器 input_register_handle
文章目录 input_handle结构体详解配对的input设备与input事件处理器实例input核心层对驱动层和事件层之间的框架建立流程图 本文章中与input子系统相关的结构体可参考input子系统结构体解析 input函数路径:drivers/input/input.c input_handle结构体详解 input_ha…...

Vue2.x源码解析(三)
Platform 函数 Platform 函数是用于与各种浏览器和平台进行交互的函数,它为 Vue 提供了跨平台的支持,例如浏览器、Node.js 等。Platform 函数提供了一些常用的工具和配置项,例如事件的托管、资源请求和异步更新等。下面是 Platform 函数的伪…...

全面理解守护进程的基础概念,以及如何创建一个守护进程(系列文章第三篇)
前言 这个系列的文章有四篇,其目的是为了搞清楚: 进程,shell,shell进程,终端,控制终端,前台进程,后台进程,控制进程,前台进程组,后台进程组&#…...

Leetcode刷题日志5.0
目录 前言: 1.两数相加 2.无重复字符的最长子串 3.整数反转 4.删除链表的倒数第 N 个结点 前言: 今天我又来继续分享最近做的题了,现在开始进入我们快乐的刷题时间吧!(编程语言Python3.0,难度…...

母亲节:向世界上最伟大的母爱致敬
在这世间众多的亲情关系中,有一种关系无与伦比,毫不费力地凌驾于其他任何已知的地球关系之上。这种非凡的关系就是母亲与子女之间的关系。 母亲对家庭无尽的爱、奉献和忠诚使这份感情无价。为了向全球所有母亲表示敬意,母亲节在世界46个国家庆…...