ANR原理篇 - ANR原理总览
系列文章目录
提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加
例如:第一章 Python 机器学习入门之pandas的使用
文章目录
- 系列文章目录
- 前言
- ANR流程概览
- ANR触发机制
- 一、service超时机制
- 二、broadcast超时机制
- 三、provider超时机制
- 四、input超时机制
- ANR信息收集
- Question
前言
不论从事安卓应用开发,还是安卓系统研发,应该都遇到应用无响应(ANR,Application Not Responding)问题,当应用程序一段时间无法及时响应,则会弹出ANR对话框,让用户选择继续等待,还是强制关闭。
那么哪些场景会造成ANR呢?
Service Timeout:比如前台服务在20s内未执行完成;
BroadcastQueue Timeout:比如前台广播在10s内未执行完成
ContentProvider Timeout:内容提供者,在publish过超时10s;
InputDispatching Timeout: 输入事件分发超时5s,包括按键和触摸事件。
ANR流程概览
我们通过一张流程图来了解整个ANR的流程:

无论是哪种类型的ANR,哪怕是native层的ANR,最终也会通知到AnrHelper类的appNotResponding方法。所以,我们从这个方法开始了解整个ANR的流程。我们用来区分ANR的四种不同类型,其实也就是appNotResponding这个方法中的annotation不同而已,而ANR本身是不去分类型的。
- appNotResponding方法中,主要是生成AnrRecord对象,加入到mAnrRecords集合中。然后调用startAnrConsumerIfNeeded方法。
- startAnrConsumerIfNeeded方法主要是通过cas进行判断,避免两个ANR线程同时执行。如果没有冲突的话,则开启AnrConsumerThread线程,对mAnrRecords中的对象进行消费。
- AnrConsumerThread的run方法中,就是从mAnrRecords中取出对象,这些对象第一条中添加的。通过AnrRecord自身的appNotResponding方法进行消费。
- appNotResponding方法就是整个ANR流程的核心执行逻辑了。总结一下,其实主要分为两大块:
- 生成ANR的相关log以及日志并打印或保存
- 触发ANR超时机制,弹出应用无响应的框
ANR日志生成可查看ANR原理篇 - ANR信息收集过程
下面篇章,主要看下ANR触发机制。
ANR触发机制
ANR是一套监控Android应用响应是否及时的机制,可以把发生ANR比作是引爆炸弹,整个流程包含三部分组成:
1.埋定时炸弹:中控系统(system_server进程)启动倒计时,在规定时间内如果目标(应用进程)没有干完所有的活,则中控系统会定向炸毁(杀进程)目标。
2.拆炸弹:在规定的时间内干完工地的所有活,并及时向中控系统报告完成,请求解除定时炸弹,则幸免于难。
3.引爆炸弹:中控系统立即封装现场,抓取快照,搜集目标执行慢的罪证(traces),便于后续的案件侦破(调试分析),最后是炸毁目标。
常见的ANR有service、broadcast、provider以及input。
更多细节详见下面两篇:
ANR原理篇 - service/broadcast/provider超时机制
ANR原理篇 - Input超时机制
一、service超时机制
下面来看看埋炸弹与拆炸弹在整个服务启动(startService)过程所处的环节:

图解:
- 客户端(App进程)向中控系统(system_server进程)发起启动服务的请求
- 中控系统派出一名空闲的通信员(binder_1线程)接收该请求,紧接着向组件管家(ActivityManager线程)发送消息,埋下定时炸弹
- 通讯员1号(binder_1)通知工地(service所在进程)的通信员准备开始干活
- 通讯员3号(binder_3)收到任务后转交给包工头(main主线程),加入包工头的任务队列(MessageQueue)
- 包工头经过一番努力干完活(完成service启动的生命周期),然后等待SharedPreferences(简称SP)的持久化;
- 包工头在SP执行完成后,立刻向中控系统汇报工作已完成
- 中控系统的通讯员2号(binder_2)收到包工头的完工汇报后,立刻拆除炸弹。如果在炸弹倒计时结束前拆除炸弹则相安无事,否则会引发爆炸(触发ANR)
更多细节详见startService启动过程分析。
二、broadcast超时机制
broadcast跟service超时机制大抵相同,如下图所示。

图解:
- 客户端(App进程)向中控系统(system_server进程)发起发送广播的请求
- 中控系统派出一名空闲的通信员(binder_1)接收该请求转交给组件管家(ActivityManager线程)
- 组件管家执行任务(processNextBroadcast方法)的过程埋下定时炸弹
- 组件管家通知工地(receiver所在进程)的通信员准备开始干活
- 通讯员3号(binder_3)收到任务后转交给包工头(main主线程),加入包工头的任务队列(MessageQueue)
- 包工头经过一番努力干完活(完成receiver启动的生命周期),然后等待SP工人完成SP数据的持久化工作,便可以向中控系统汇报工作完成
- 中控系统的通讯员2号(binder_2)收到包工头的完工汇报后,立刻拆除炸弹。如果在倒计时结束前拆除炸弹则相安无事,否则会引发爆炸(触发ANR)
对于静态注册的广播在超时检测过程,还多一个步骤:需要检测SP,位于第6步和第7步之间。
SP的apply将修改的数据项更新到内存,然后再异步同步数据到磁盘文件,因此很多地方会推荐在主线程调用采用apply方式,避免阻塞主线程,但静态广播超时检测过程需要SP全部持久化到磁盘,如果过度使用apply会增大应用ANR的概率,更多细节详见系统SharedPreferences工作过程。
Google这样设计的初衷是针对静态广播的场景下,保障进程被杀之前一定能完成SP的数据持久化。因为在向中控系统汇报广播接收者工作执行完成前,该进程的优先级为Foreground级别,高优先级下进程不但不会被杀,而且能分配到更多的CPU时间片,加速完成SP持久化。更多细节详见Android Broadcast广播机制。
三、provider超时机制
provider的超时是在provider进程首次启动的时候才会检测,当provider进程已启动的场景,再次请求provider并不会触发provider超时。

图解:
- 客户端(App进程)向中控系统(system_server进程)发起获取内容提供者的请求
- 中控系统派出一名空闲的通信员(binder_1)接收该请求,检测到内容提供者尚未启动,则先通过zygote孵化新进程
- 新孵化的provider进程向中控系统注册自己的存在
- 中控系统的通信员2号接收到该信息后,向组件管家(ActivityManager线程)发送消息,埋下炸弹
- 通信员2号通知工地(provider进程)的通信员准备开始干活
- 通讯员4号(binder_4)收到任务后转交给包工头(main主线程),加入包工头的任务队列(MessageQueue)
- 包工头经过一番努力干完活(完成provider的安装工作)后向中控系统汇报工作已完成
- 中控系统的通讯员3号(binder_3)收到包工头的完工汇报后,立刻拆除炸弹。如果在倒计时结束前拆除炸弹则相安无事,否则会引发爆炸(触发ANR)
更多细节详见理解ContentProvider原理。
四、input超时机制
input的超时检测机制跟service、broadcast、provider截然不同,
为了更好的理解input过程先来介绍两个重要线程的相关工作:
- InputReader线程负责通过EventHub(监听目录/dev/input)读取输入事件,一旦监听到输入事件则放入到InputDispatcher的mInBoundQueue队列,并通知其处理该事件;
- InputDispatcher线程负责将接收到的输入事件分发给目标应用窗口,分发过程使用到3个事件队列:
- mInBoundQueue用于记录InputReader发送过来的输入事件;
- outBoundQueue用于记录即将分发给目标应用窗口的输入事件;
- waitQueue用于记录已分发给目标应用,且应用尚未处理完成的输入事件;
input的超时机制并非时间到了一定就会爆炸,而是处理后续上报事件的过程才会去检测是否该爆炸,所以更像是扫雷的过程,具体如下图所示:

图解:
- InputReader线程通过EventHub监听底层上报的输入事件,一旦收到输入事件则将其放至mInBoundQueue队列,并唤醒InputDispatcher线程
- InputDispatcher开始分发输入事件,设置埋雷的起点时间。先检测是否有正在处理的事件(mPendingEvent),如果没有则取出mInBoundQueue队头的事件,并将其赋值给mPendingEvent,且重置ANR的timeout;否则不会从mInBoundQueue中取出事件,也不会重置timeout。然后检查窗口是否就绪(checkWindowReadyForMoreInputLocked),满足以下任一情况,则会进入扫雷状态(检测前一个正在处理的事件是否超时),终止本轮事件分发,否则继续执行步骤3。
- 对于按键类型的输入事件,则outboundQueue或者waitQueue不为空,
- 对于非按键的输入事件,则waitQueue不为空,且等待队头时间超时500ms
- 当应用窗口准备就绪,则将mPendingEvent转移到outBoundQueue队列
- 当outBoundQueue不为空,且应用管道对端连接状态正常,则将数据从outboundQueue中取出事件,放入waitQueue队列
- InputDispatcher通过socket告知目标应用所在进程可以准备开始干活
- App在初始化时默认已创建跟中控系统双向通信的socketpair,此时App的包工头(main线程)收到输入事件后,会层层转发到目标窗口来处理
- 包工头完成工作后,会通过socket向中控系统汇报工作完成,则中控系统会将该事件从waitQueue队列中移除。
input超时机制为什么是扫雷,而非定时爆炸呢?
是由于对于input来说即便某次事件执行时间超过timeout时长,只要用户后续在没有再生成输入事件,则不会触发ANR。 这里的扫雷是指当前输入系统中正在处理着某个耗时事件的前提下,后续的每一次input事件都会检测前一个正在处理的事件是否超时(进入扫雷状态),检测当前的时间距离上次输入事件分发时间点是否超过timeout时长。如果完成前一个输入事件,则会重置ANR的timeout,从而不会爆炸。
ANR信息收集
对于service、broadcast、provider、input发生ANR后,中控系统会马上去抓取现场的信息,用于调试分析。收集的信息包括如下:
- 将am_anr信息输出到EventLog,也就是说ANR触发的时间点最接近的就是EventLog中输出的am_anr信息
- 收集以下重要进程的各个线程调用栈trace信息,保存在data/anr/traces.txt文件
- 当前发生ANR的进程,system_server进程以及所有persistent进程
- audioserver, cameraserver, mediaserver, surfaceflinger等重要的native进程
- CPU使用率排名前5的进程
- 将发生ANR的reason以及CPU使用情况信息输出到main log
- 将traces文件和CPU使用情况信息保存到dropbox,即data/system/dropbox目录
- 对用户可感知的进程则弹出ANR对话框告知用户,对用户不可感知的进程发生ANR则直接杀掉
整个ANR信息收集过程比较耗时,其中抓取进程的trace信息,每抓取一个等待200ms,可见persistent越多,等待时间越长。
关于抓取trace命令,对于Java进程可通过在adb shell环境下执行kill -3 [pid]可抓取相应pid的调用栈;
对于Native进程在adb shell环境下执行debuggerd -b [pid]可抓取相应pid的调用栈。
对于ANR问题发生后的蛛丝马迹(trace)在traces.txt和dropbox目录中保存记录。
更多细节详见理解Android ANR的信息收集过程
有了现场信息,可以调试分析,先定位发生ANR时间点,然后查看trace信息,接着分析是否有耗时的message、binder调用,锁的竞争,CPU资源的抢占,以及结合具体场景的上下文来分析,调试手段就需要针对前面说到的message、binder、锁等资源从系统角度细化更多debug信息,这里不再展开,后续再以ANR案例来讲解。
作为应用开发者应让主线程尽量只做UI相关的操作,避免耗时操作,比如过度复杂的UI绘制,网络操作,文件IO操作;避免主线程跟工作线程发生锁的竞争,减少系统耗时binder的调用,谨慎使用sharePreference,注意主线程执行provider query操作。简而言之,尽可能减少主线程的负载,让其空闲待命,以期可随时响应用户的操作。
Question
有哪些路径会引发ANR?
答案是从埋下定时炸弹到拆炸弹之间的任何一个或多个路径执行慢都会导致ANR(以service为例),可以是service的生命周期的回调方法(比如onStartCommand)执行慢,可以是主线程的消息队列存在其他耗时消息让service回调方法迟迟得不到执行,可以是SP操作执行慢,可以是system_server进程的binder线程繁忙而导致没有及时收到拆炸弹的指令。另外ActivityManager线程也可能阻塞,出现的现象就是前台服务执行时间有可能超过10s,但并不会出现ANR。
发生ANR时从trace来看主线程却处于空闲状态或者停留在非耗时代码的原因有哪些?
可以是抓取trace过于耗时而错过现场,可以是主线程消息队列堆积大量消息而最后抓取快照一刻只是瞬时状态,可以是广播的“queued-work-looper”一直在处理SP操作。
致谢:
理解Android ANR的触发原理
http://gityuan.com/2016/07/02/android-anr/
ANR信息收集过程
http://gityuan.com/2016/12/02/app-not-response/
Intpu原理分析
http://gityuan.com/2017/01/01/input-anr/
彻底理解安卓应用无响应机制
http://gityuan.com/2019/04/06/android-anr/
ANR显示和日志生成原理讲解
相关文章:
ANR原理篇 - ANR原理总览
系列文章目录 提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加 例如:第一章 Python 机器学习入门之pandas的使用 文章目录 系列文章目录前言ANR流程概览ANR触发机制一、service超时机制二、broadcast超时机制三、provider超…...
新版Mamba体验超快的软件安装
在一文掌握Conda软件安装:虚拟环境、软件通道、加速solving、跨服务器迁移中详细介绍的conda的基本使用和遇到问题的解决方式,也提到了mamba作为一个替代工具,可以很好的加速conda的solving environemnt过程。但有时也会遇到一个很尴尬的问题…...
LDAP配置与安装
LDAP配置与安装 一、安装LDAP1、安装OpenLDAP及相关依赖包2、查看OpenLDAP版本3、配置OpenLDAP数据库4、设置OpenLDAP的管理员密码5、修改配置文件5.1. 修改{2}hdb.ldif文件5.2. 修改{1}monitor.ldif文件5.3. 修改{-1}frontend.ldif文件 6、验证LDAP的基本配置7、修改LDAP文件权…...
1-Linux环境安装JDK
Linux环境安装JDK 准备: ① Linux 环境 本文中Linux环境为 CentOS Linux 7 可使用以下命令查询 linux 系统版本: hostnamectl② 准备JDK包 进入官网 https://www.oracle.com/java/technologies/downloads/#java17下载对应jdk包 此处使用以前下载的旧…...
通胀数据回落助金价小幅回升
现货黄金窄幅震荡,目前交投于2032.92美元/盎司附近。隔夜美国通胀数据弱于市场预期,市场对美联储6月份加息预期降温,美元指数走弱,金价一度冲高至2050关口附近,不过,随后金价回吐全部涨幅,并一度…...
正则表达式的基本语法以及技巧和示例
正则表达式(Regular Expression)是一种强大的文本模式匹配工具,它使用特定的语法规则来描述和匹配字符串。在实际应用中,正则表达式可以用于搜索、替换、验证和分割文本数据。本文将详细解释正则表达式的语法和常用的使用示例。 …...
蓝牙耳机怎么挑选?小编分享2023畅销蓝牙耳机排行榜
蓝牙耳机怎么挑选?蓝牙、音质、续航、佩戴是蓝牙耳机选购时最重要的四大维度,这几年随着技术的成熟体验有了很大改善,但挑选的时候仍然要仔细对比,不然容易踩雷。小编根据销量整理了蓝牙耳机排行榜,一起看看最受消费者…...
Linux快照太有趣了!
1.首先介绍一下什么是Linux快照 VMware 的菜单栏中有虚拟机快照这个选项,形象来说快照就相当于一个备份文件,记录的是虚拟机运行到某一节点时的状态,在虚拟机的使用过程中如果发生了意外,比如系统崩溃或系统异常,此时…...
【改进粒子群优化算法】自适应惯性权重粒子群算法(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...
ROS 下 激光扫描仪 YDLidar-G4 使用
环境配置: ubuntu20.04 LTS ROS noetic 编程工具:vs code,远程通过ssh访问 扫描仪:YDLidar-G4 YDLidar驱动: YDLidar SDK YDLidar ROS 功能包 此环境包含树莓派,以下过程在树莓派3B上测试通过,…...
智能边缘:数字化时代的关键战略之一
随着物联网、云计算和人工智能等技术的快速发展,智能边缘已经成为了许多企业和组织中的重要部分。智能边缘旨在将物联网设备、应用程序和数据存储集成到一个统一的、移动的计算环境中,以提高效率、降低成本并增强数据安全性。在本文中,我们将…...
EasyRecovery16中文最新版电脑数据恢复软件下载使用教程
EasyRecovery如果需要使用它来恢复数据,请注意,尤其是当需要恢复的数据文件非常重要时,建议使用软件EasyRecovery以保障数据安全。共有三个版本,分别是个人版、专业版、企业版,这三种都可以免费下载并使用,…...
什么是鉴权?这些postman鉴权方式你又知道多少?
一、什么是鉴权? 鉴权也就是身份认证,就是验证您是否有权限从服务器访问或操作相关数据。发送请求时,通常必须包含相应的检验参数以确保请求具有访问权限并返回所需数据。通俗的讲就是一个门禁,您想要进入室内,必须通过…...
最新的经典mysql面试题及答案
互联网产品必然是需要有架构的,架构包含接入层、储蓄层、逻辑处理等等,其中存储层承载着数据落地和持久化的任务,同时给逻辑处理层提供数据查询功能支持。而一提到储蓄层必然就要说数据库了,对于数据库的掌握也是软件工程师面试时…...
算法修炼之练气篇——练气十九层
博主:命运之光 专栏:算法修炼之练气篇 前言:每天练习五道题,炼气篇大概会练习200道题左右,题目有C语言网上的题,也有洛谷上面的题,题目简单适合新手入门。(代码都是命运之光自己写的…...
记录一次Windows7操作系统渗透测试
#本文档仅用于实验,请勿用来使用恶意攻击! 《中华人民共和国网络安全法》中,恶意破坏计算机信息系统罪在第二十七条被明确规定,规定内容为: 第二十七条 任何单位和个人不得为达到破坏计算机信息系统安全的目的&#x…...
承诺协议:定义 构造
文章目录 安全性定义方案构造基于 OWP 存在性基于 DL 假设基于 OWF 存在性基于 DDH 假设 总结 安全性定义 承诺协议(Commitment Scheme)是一个两阶段的两方协议。一方是承诺者(Committer) C C C,另一方是接收者&#…...
二、easyUI中的layout(布局)组件
1.layout(布局)组件的概述 布局容器有5个区域:北、南、东、西和中间。中间区域面板是必须的,边缘的面板都是可选的。每个边缘区域面板都可以通过拖拽其边框改变大小,也可以点击折叠按钮将面板折叠起来。布局可以进行嵌…...
MySQL---聚合函数、字符串函数、数学函数、日期函数
1. 聚合函数 数据准备: create database mydb4; use mydb4;create table emp(emp_id int primary key auto_increment comment 编号,emp_name char(20) not null default comment 姓名,salary decimal(10,2) not null default 0 comment 工资,department char(20…...
边缘计算盒子有哪些?边缘计算应用场景
边缘计算(Edge Computing)是一种分布式计算模型,旨在将数据处理和计算功能从中心数据中心移到数据源附近的边缘设备上。它的目标是在接近数据生成的地方进行实时数据处理和分析,减少数据传输延迟和网络拥塞,提高应用程…...
wordpress后台更新后 前端没变化的解决方法
使用siteground主机的wordpress网站,会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后,网站没有变化的情况。 不熟悉siteground主机的新手,遇到这个问题,就很抓狂,明明是哪都没操作错误&#x…...
springboot 百货中心供应链管理系统小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,百货中心供应链管理系统被用户普遍使用,为方…...
CTF show Web 红包题第六弹
提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框,很难让人不联想到SQL注入,但提示都说了不是SQL注入,所以就不往这方面想了 先查看一下网页源码,发现一段JavaScript代码,有一个关键类ctfs…...
服务器硬防的应用场景都有哪些?
服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式,避免服务器受到各种恶意攻击和网络威胁,那么,服务器硬防通常都会应用在哪些场景当中呢? 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...
Python爬虫(二):爬虫完整流程
爬虫完整流程详解(7大核心步骤实战技巧) 一、爬虫完整工作流程 以下是爬虫开发的完整流程,我将结合具体技术点和实战经验展开说明: 1. 目标分析与前期准备 网站技术分析: 使用浏览器开发者工具(F12&…...
C# 类和继承(抽象类)
抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...
【配置 YOLOX 用于按目录分类的图片数据集】
现在的图标点选越来越多,如何一步解决,采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集(每个目录代表一个类别,目录下是该类别的所有图片),你需要进行以下配置步骤&#x…...
并发编程 - go版
1.并发编程基础概念 进程和线程 A. 进程是程序在操作系统中的一次执行过程,系统进行资源分配和调度的一个独立单位。B. 线程是进程的一个执行实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位。C.一个进程可以创建和撤销多个线程;同一个进程中…...
Rust 开发环境搭建
环境搭建 1、开发工具RustRover 或者vs code 2、Cygwin64 安装 https://cygwin.com/install.html 在工具终端执行: rustup toolchain install stable-x86_64-pc-windows-gnu rustup default stable-x86_64-pc-windows-gnu 2、Hello World fn main() { println…...
【LeetCode】算法详解#6 ---除自身以外数组的乘积
1.题目介绍 给定一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法,且在 O…...
