当前位置: 首页 > news >正文

【WSN覆盖】基于麻雀搜索算法的三维无线传感器网络覆盖优化 三维WSN覆盖优化【Matlab代码#26】

文章目录

    • 【可更换其他算法,`获取资源`请见文章第5节:资源获取】
    • 1. SSA算法
    • 2. 三维覆盖模型
    • 3. 部分代码展示
    • 4. 仿真结果展示
    • 5. 资源获取


【可更换其他算法,获取资源请见文章第5节:资源获取】


1. SSA算法

在这里插入图片描述
在这里插入图片描述

2. 三维覆盖模型

三维覆盖模型如下面图1所示。
在这里插入图片描述

由于节点随机抛洒,而传感器节点的分布情况会影响网络覆盖率,以 R c o v R_{cov} Rcov作为覆盖率评价标准。在三维覆盖区域中,传感器节点的覆盖区域是某一半径确定的球。在三维监测区域中随机抛洒 N N N个传感器节点,形成节点集 S = { s 1 , s 2 , . . . , s N } (1) S=\left \{ s_{1},s_{2},...,s_{N} \right \} \tag{1} S={s1,s2,...,sN}(1)
其中,第 i i i个节点的坐标为 s i ( x i , y i , z i ) s_{i}(x_{i},y_{i},z_{i}) si(xi,yi,zi)。三维监控节点集合为 L = { l 1 , l 2 , . . . , l N } (2) L=\left \{ l_{1},l_{2},...,l_{N} \right \} \tag{2} L={l1,l2,...,lN}(2)其中,三维监测区域内某个目标点为 l v ( x v , y v , z v ) l_{v}(x_{v},y_{v},z_{v}) lv(xv,yv,zv),三维监控点与目标点的距离为:
d ( s i , l v ) = ( x i − x v ) 2 + ( y i − y v ) 2 + ( z i − z v ) 2 (3) d(s_{i},l_{v})=\sqrt{(x_{i}-x_{v})^{2}+ (y_{i}-y_{v})^{2}+(z_{i}-z_{v})^{2}} \tag{3} d(si,lv)=(xixv)2+(yiyv)2+(zizv)2 (3)
d ( s i , l v ) ≤ R s d(s_{i},l_{v})\le R_{s} d(si,lv)Rs,则目标点在三维覆盖区域内,感知度标记为1;相反,则在三维覆盖区域之外,感知度标记为0。采用布尔感知模型,感知度为:
p ( s i , l v ) = { 1 , d ( s i , l v ) ≤ R S 0 , d ( s i , l v ) > R S (4) p(s_{i},l_{v})=\left\{\begin{matrix} 1,d(s_{i},l_{v})\le R_{S} \\ 0,d(s_{i},l_{v})> R_{S} \end{matrix}\right. \tag{4} p(si,lv)={1,d(si,lv)RS0,d(si,lv)>RS(4)
其中,R_{s}为节点的通信半径,假设三维网络中有 k k k个 待测节点 s 1 , s 2 , . . . , s k s_{1},s_{2},...,s_{k} s1,s2,...,sk,对应点 l l l的覆盖率分别为 p ( s i , l v ) p(s_{i},l_{v}) p(si,lv),其中 k a l l k_{all} kall是监测区域内所有待测传感器节点, R p ( k a l l , l v ) R_{p}(k_{all},l_{v}) Rp(kall,lv)为联合感知概率,表达式为:
R p ( k a l l , l v ) = 1 − ∏ i = 1 k ( 1 − p ( s i , l v ) ) (5) R_{p}(k_{all},l_{v})=1-\prod_{i=1}^{k}(1-p(s_{i},l_{v})) \tag{5} Rp(kall,lv)=1i=1k(1p(si,lv))(5)
网络整体覆盖率为:
R c o v = ∑ i = 1 k R p ( k a l l , l v ) k (6) R_{cov}=\frac{\sum_{i=1}^{k}R_{p}(k_{all},l_{v}) }{k} \tag{6} Rcov=ki=1kRp(kall,lv)(6)
其中, R c o v R_{cov} Rcov是传感器网络的整体覆盖率, P P P为区域中的任意一个监测点。以覆盖率为适应度函数,可以检验无线传感网络覆盖性能。

3. 部分代码展示

FoodNumber=30; %种群数量
maxCycle=500; %最大迭代次数
dim=30; %待优化参数数量
P_percent = 0.2; %发现者比例
pNum = round( FoodNumber *  P_percent ); %发现者数量
objfun='WSNcover';
c=0; %下限
d=50; %上限
r=10; %边界宽lb= c.*ones( 1,dim );    % Lower limit bounds
ub= d.*ones( 1,dim );    % Upper limit bounds
for i = 1 : FoodNumberFoodsX( i, : ) = lb + (ub - lb) .* rand( 1, dim ); FoodsY( i, : ) = lb + (ub - lb) .* rand( 1, dim );FoodsZ( i, : ) = lb + (ub - lb) .* rand( 1, dim );ObjVal(i)=feval(objfun,FoodsX( i, : ),FoodsY( i, : ),FoodsZ( i, : ),dim,r,d);Fitness(i)=calculateFitness(-ObjVal(i));% 得到适应度值,覆盖率越高,适应度值越高
endpFit = Fitness;
pObj = ObjVal;
pX = FoodsX; 
pY = FoodsY;
pZ = FoodsZ;
[ ObjMax, ObjbestI ] = max( ObjVal );
[ fMax, fbestI ] = max( Fitness );
bestX = FoodsX( fbestI, : ); 
bestY = FoodsY( fbestI, : ); 
bestZ = FoodsZ( fbestI, : );
HistoryObjMax = [1,maxCycle];% 画图
figure(1)
for i=1:dimx = bestX(1,i);y = bestY(1,i);z = bestZ(1,i);cc(x,y,z,r);hold on;
end
xlabel('X(m)');
ylabel('Y(m)');
zlabel('Z(m)');
title('优化前覆盖效果');

4. 仿真结果展示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5. 资源获取

A资源获取说明.rar

相关文章:

【WSN覆盖】基于麻雀搜索算法的三维无线传感器网络覆盖优化 三维WSN覆盖优化【Matlab代码#26】

文章目录 【可更换其他算法,获取资源请见文章第5节:资源获取】1. SSA算法2. 三维覆盖模型3. 部分代码展示4. 仿真结果展示5. 资源获取 【可更换其他算法,获取资源请见文章第5节:资源获取】 1. SSA算法 2. 三维覆盖模型 三维覆盖模…...

【学习日记2023.5.20】 之 菜品模块完善

文章目录 3. 功能模块完善之菜品模块3.1 公共字段自动填充3.1.1 问题分析3.1.2 实现思路3.1.3 代码开发1.3.1 步骤一1.3.2 步骤二1.3.3 步骤三 3.1.4 功能测试3.1.5 提交代码 3.2 新增菜品3.2.1 需求分析与设计3.2.2 代码开发3.2.2.1 文件上传实现3.2.2.2 新增菜品实现 3.2.3 功…...

MySQL高级SQL语句

创建两个表用于演示 location store_info use kgc; create table location (Region char(20),Store_Name char(20)); insert into location values(East,Boston); insert into location values(East,New York); insert into location values(West,Los Angeles); insert into lo…...

rem和em的区别和使用场景,以及如何在实际开发中灵活运用它们

在前端开发中,我们经常使用rem和em作为长度单位来设置页面元素的大小。虽然它们都可以用于实现响应式布局,但是它们之间存在着一些区别。本文将深入探讨rem和em的区别和使用场景,以及如何在实际开发中灵活运用它们。 什么是rem rem是相对于…...

JDK源码阅读环境搭建

本次针对jdk8u版本的搭建 1.新建项目 新建java项目JavaSourceLearn ,这里我创建的是maven 2.获取JDK源码 打开Project Structure 找到本地JDK安装位置将src.zip解压到项目java包中 整理下项目结构,删除用不到的目录 提示: 添加源码到项目之后首次运行…...

基本定时器工作模式

计数和定时 BasicTimer支持8位或16位向上计数模式。当计数值大于等于比较寄存器(CMPH、CMPL),会产生计数中断标志,并从自动重载寄存器(LOADH、LOADL)加载新的比较值。这样可以实时调整每个计数周期的计数长…...

【华为OD机试真题2023B卷 JAVA】报文重排序

华为OD2023(B卷)机试题库全覆盖,刷题指南点这里 报文重排序 时间限制:1s 空间限制:256MB 限定语言:不限 题目描述: 对报文进行重传和重排序是常用的可靠性机制,重传缓冲区内有一定数量的子报文,每个子报文在原始报文中的顺序已知,现在需要恢复出原始报文。。 输入描…...

【Docker】- 02 Docker-Compose

Docker-Compose Docker-Compose1 下载并安装Docker-Compose1.1 下载Docker-Compose1.2 设置权限1.3 配置环境变量1.4 测试 2 Docker-Compose管理MySQL和Tomcat容器3 使用docker-compose命令管理容器4 docker-compose配合Dockerfile使用4.1 docker-compose文件4.2 Dockerfile文件…...

工业相机的Pixel Binning和Pixel Skipping

一般图像传感器的不同分辨率都对应着不同的帧率。如果想要提高帧率,就要考虑是否需要缩小视野。若不希望视野缩小,就需要减小分辨率(resolution)。常用的减少分辨率的两种采样方式是:Skipping和Binning。 什么是Binni…...

c++ 11标准模板(STL) std::set(八)

定义于头文件 <set> template< class Key, class Compare std::less<Key>, class Allocator std::allocator<Key> > class set;(1)namespace pmr { template <class Key, class Compare std::less<Key>> using se…...

linux服务器断电重启后,发现时间误差八小时

文章目录 问题现象排查与解决时间同步与设置服务器时钟介绍 问题现象 客户的服务器已部署好平台&#xff0c;放入了机房&#xff0c;运行正常。服务器系统时间设置东八区&#xff08;CST&#xff09;&#xff0c;时间日期也已修改正确客户是我省的某小县城&#xff0c;某台晚上…...

兼容人大金仓,异常信息报错解决大全

乱码报错 ISO-8859-1 SQL 错误 [55006]: : "ssss" (kbjdbc: autodetected server-encoding to be ISO-8859-1, if the message is not readable, please check database logs and/or host, port, dbname, user, password, pg_hba.conf) Detail: 3. : "sss…...

短睡眠 堀大辅 超短眠 人生更丰富

堀大辅是位每天只睡半小时的日本狠人&#xff0c;更多信息自行百度。以下内容&#xff0c;个人收集总结&#xff0c;仅供参考。 堀大辅大胆假设「只要能够减少睡眠的时间&#xff0c;我就能过得更充实」&#xff0c;便与朋友付诸行动&#xff0c;通过纪录观察每天的睡眠时数&a…...

私有GitLab仓库 - 本地搭建GitLab私有代码仓库并随时远程访问「内网穿透」

文章目录 前言1. 下载Gitlab2. 安装Gitlab3. 启动Gitlab4. 安装cpolar内网穿透5. 创建隧道配置访问地址6. 固定GitLab访问地址6.1 保留二级子域名6.2 配置二级子域名 7. 测试访问二级子域名 转载自远控源码文章&#xff1a;Linux搭建GitLab私有仓库&#xff0c;并内网穿透实现公…...

Debezium系列之:Debezium镜像仓库Quay.io,使用Debezium镜像仓库的方法和案例

Debezium系列之:Debezium镜像仓库Quay.io,使用Debezium镜像仓库的方法和案例 一、Debezium镜像仓库变动二、镜像仓库[Quay.io](https://quay.io/organization/debezium)三、使用镜像仓库Quay.io方法四、使用镜像仓库下载Debezium UI一、Debezium镜像仓库变动 Debezium2.2版本…...

文心一言和ChatGPT最全对比

文心一言和ChatGPT都是基于深度学习技术的自然语言处理模型&#xff0c;有各自的优势和使用场景&#xff0c;无法简单地比较 ChatGPT 和文心一言哪一个功能更强大&#xff0c;它们各自具有优势和局限性&#xff0c;需要根据具体需求进行选择&#xff0c;以下一些具体对比&#…...

龙芯2K1000实战开发-平台介绍

文章目录 概要整体架构流程技术名词解释技术细节小结概要 龙芯 2K1000 处理器主要面向于网络应用,兼顾平板应用及工控领域应 用。采用 40nm 工艺,片内集成 2 个 GS264 处理器核,主频 1GHz,64 位 DDR3 控制器,以及各种系统 IO 接口。 整体架构 龙芯 2K1000 的结构如图 所…...

C++ map用法总结(整理)

1&#xff0c;map简介 map是STL的一个关联容器&#xff0c;它提供一对一的hash。 第一个可以称为关键字(key)&#xff0c;每个关键字只能在map中出现一次&#xff1b;第二个可能称为该关键字的值(value)&#xff1b; map以模板(泛型)方式实现&#xff0c;可以存储任意类型的…...

面向对象的第二个基本特征:继承011026

1.什么是继承&#xff1f; 生活中&#xff1a; 继承 ---> 延续 ---> 扩展 代码中&#xff1a; 继承 ---> 重复使用已有的类的代码&#xff08;复用&#xff09; ---> 扩展已有类的代码&#xff08;扩展&#xff09; 2.为什么要继承&#xff1f; ① 代码的复用和…...

机器学习项目实战-能源利用率 Part-3(特征工程与特征筛选)

博主前期相关的博客可见下&#xff1a; 机器学习项目实战-能源利用率 Part-1&#xff08;数据清洗&#xff09; 机器学习项目实战-能源利用率 Part-2&#xff08;探索性数据分析&#xff09; 这部分进行的特征工程与特征筛选。 三 特征工程与特征筛选 一般情况下我们分两步走…...

反向工程与模型迁移:打造未来商品详情API的可持续创新体系

在电商行业蓬勃发展的当下&#xff0c;商品详情API作为连接电商平台与开发者、商家及用户的关键纽带&#xff0c;其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息&#xff08;如名称、价格、库存等&#xff09;的获取与展示&#xff0c;已难以满足市场对个性化、智能…...

微信小程序 - 手机震动

一、界面 <button type"primary" bindtap"shortVibrate">短震动</button> <button type"primary" bindtap"longVibrate">长震动</button> 二、js逻辑代码 注&#xff1a;文档 https://developers.weixin.qq…...

【git】把本地更改提交远程新分支feature_g

创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...

汇编常见指令

汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX&#xff08;不访问内存&#xff09;XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...

初探Service服务发现机制

1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能&#xff1a;服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源&#xf…...

【JavaSE】多线程基础学习笔记

多线程基础 -线程相关概念 程序&#xff08;Program&#xff09; 是为完成特定任务、用某种语言编写的一组指令的集合简单的说:就是我们写的代码 进程 进程是指运行中的程序&#xff0c;比如我们使用QQ&#xff0c;就启动了一个进程&#xff0c;操作系统就会为该进程分配内存…...

Scrapy-Redis分布式爬虫架构的可扩展性与容错性增强:基于微服务与容器化的解决方案

在大数据时代&#xff0c;海量数据的采集与处理成为企业和研究机构获取信息的关键环节。Scrapy-Redis作为一种经典的分布式爬虫架构&#xff0c;在处理大规模数据抓取任务时展现出强大的能力。然而&#xff0c;随着业务规模的不断扩大和数据抓取需求的日益复杂&#xff0c;传统…...

基于开源AI智能名片链动2 + 1模式S2B2C商城小程序的沉浸式体验营销研究

摘要&#xff1a;在消费市场竞争日益激烈的当下&#xff0c;传统体验营销方式存在诸多局限。本文聚焦开源AI智能名片链动2 1模式S2B2C商城小程序&#xff0c;探讨其在沉浸式体验营销中的应用。通过对比传统品鉴、工厂参观等初级体验方式&#xff0c;分析沉浸式体验的优势与价值…...

学习 Hooks【Plan - June - Week 2】

一、React API React 提供了丰富的核心 API&#xff0c;用于创建组件、管理状态、处理副作用、优化性能等。本文档总结 React 常用的 API 方法和组件。 1. React 核心 API React.createElement(type, props, …children) 用于创建 React 元素&#xff0c;JSX 会被编译成该函数…...

从0开始一篇文章学习Nginx

Nginx服务 HTTP介绍 ## HTTP协议是Hyper Text Transfer Protocol&#xff08;超文本传输协议&#xff09;的缩写,是用于从万维网&#xff08;WWW:World Wide Web &#xff09;服务器传输超文本到本地浏览器的传送协议。 ## HTTP工作在 TCP/IP协议体系中的TCP协议上&#…...