当前位置: 首页 > news >正文

05- 线性回归算法 (LinearRegression) (算法)

  • 线性回归算法(LinearRegression)就是假定一个数据集合预测值与实际值存在一定的误差, 然后假定所有的这些误差值符合正太分布, 通过方程求这个正太分布的最小均值和方差来还原原数据集合的斜率和截距。
  • 当误差值无限接近于0时, 预测值与实际值一致, 就变成了求误差的极小值
from sklearn.linear_model import LinearRegression   
model = LinearRegression()   # 使用模型
model.fit(X,y)w_ = model.coef_        # 斜率
b_ = model.intercept_   # 截距θ = np.linalg.inv(X.T.dot(X)).dot(X.T).dot(y).round(2) # [[3.97] [7.19]] 矩阵求解


1、基本概念

线性回归是机器学习中有监督机器学习下的一种算法。 回归问题主要关注的是因变量(需要预测的值,可以是一个也可以是多个)和一个或多个数值型的自变量(预测变量)之间的关系。

  • 需要预测的值:即目标变量,target,y,连续值预测变量。
  • 影响目标变量的因素X_1...X_n,可以是连续值也可以是离散值。
  • 因变量和自变量之间的关系:即模型,model,是我们要求解的。

1.1、连续值和离散值

比如人的身高和全国的省份分布

1.2、简单线性回归

简单线性回归属于一个算法,它所对应的公式。

y = wx + b

1.3、最优解

最优解:尽可能的找到一个模型使得整体的误差最小,整体的误差通常叫做损失 Loss

  • Actual value:  真实值,一般使用 y 表示,实际值。
  • Predicted value:  预测值,是把已知的 x 带入到公式里面和猜出来的参数 w,b 计算得到的,一般使用y_表示。
  • error:  误差,预测值和真实值的差距,一般使用 ϵ 表示。
  • 最优解:  尽可能的找到一个模型使得整体的误差最小,整体的误差通常叫做损失 Loss。
  • Loss:   整体的误差,Loss 通过损失函数 Loss function 计算得到。

1.4、多元线性回归

现实生活中,往往影响结果 y 的因素不止一个,这时 x 就从一个变成了 n 个,X1,X2…Xn同时简单线性回归的公式也就不在适用了。多元线性回归公式如下:

\hat{y} = w_1x_1 + w_2x_2 +.....+ w_nx_n + b

b是截距,也可以使用​来表示

\hat{y} = w_1x_1 + w_2x_2 + ...... + w_nx_n + w_0
使用向量来表示,\vec{X} 表示所有的变量,是一维向量;\vec{W} 表示所有的系数(包含w_0),是一维向量,根据向量乘法规律:

{\color{Red} \hat{y} = W^TX}

    ​

2、正规方程

2.1、最小二乘法矩阵表示

  最小二乘法可以将误差方程转化为有确定解的代数方程组(其方程式数目正好等于未知数的个数),从而可求解出这些未知参数。这个有确定解的代数方程组称为最小二乘法估计的正规方程。公式如下:

\theta = (X^TX)^{-1}X^Ty 或者 {\color{Red} W = (X^TX)^{-1}X^Ty} ,其中的W\theta 即使方程的解!

 最小二乘法公式:

{\color{Red} J(\theta) = \frac{1}{2}\sum\limits_{i = 0}^n(h_{\theta}(x_i) - y_i)^2}

使用矩阵表示:

2.2、多元一次方程举例

三元一次方程 :

通过矩阵可以直接求解:    {\color{Red} W = X^{-1}Y}  # 通过逆矩阵进行求解

# 上面八元一次方程对应的X数据
X = np.array( [[1, -1, 1], [2, 1, -1], [2, -2, 6]])
# 对应的y
y = np.array([100, 80, 256])
np.linalg.solve(X,y).round(2)  # array([ 60., -26.,  14.])

2.3、推导正规方程 {\color{DarkBlue} \theta} 的解

  • 矩阵乘法公式展开

   

  •  使用逆矩阵进行转化

     

 2.4、凸函数判定

判定损失函数是凸函数的好处在于我们可能很肯定的知道我们求得的极值即最优解,一定是全局最优解。

 判定凸函数的方式: 判定凸函数的方式非常多,其中一个方法是看黑塞矩阵是否是半正定的。

  • 黑塞矩阵(hessian matrix)是由目标函数在点 X 处的二阶偏导数组成的对称矩阵。在导函数的基础上再次对θ来求偏导,结果全为正时为正定,如果结果大于等于0, 就是半正定判定极小值.

  

  • 在机器学习中往往损失函数都是凸函数,到深度学习中损失函数往往是非凸函数,即找到的解未必是全局最优,只要模型堪用就好!机器学习特点是:不强调模型 100% 正确,只要是有价值的,堪用的,就Okay!

 3、线性回归算法推导

人类社会很多事情都被大自然这种神奇的力量只配置:身高、体重、智商、相貌……这种神秘的力量就叫正态分布。大数学家高斯,深入研究了正态分布,最终推导出了线性回归的原理:最小二乘法

3.1、误差分析

误差等于第 i 个样本实际的值减去预测的值,公式可以表达为如下:
         {\color{Red} \varepsilon_i = |y_i - \hat{y}|}    或  \varepsilon_i = |y_i - W^Tx_i|
假定所有的样本的误差都是独立的,有上下的震荡,震荡认为是随机变量,足够多的随机变量叠加之后形成的分布,它服从的就是正态分布,因为它是正常状态下的分布,也就是高斯分布!均值是某一个值,方差是某一个值。 方差我们先不管,均值我们总有办法让它去等于零 0 的,因为我们这里是有截距b, 所有误差我们就可以认为是独立分布的,1<=i<=n,服从均值为 0,方差为某定值的高斯分布。机器学习中我们假设误差符合均值为0,方差为定值的正态分布.将误差定义到正太分布中.当样本足够多的时候,取样本的均值则为实际值.

3.2、最大似然估计

最大似然估计(maximum likelihood estimation, MLE)一种重要而普遍的求估计量的方法。最大似然估计明确地使用概率模型,其目标是寻找能够以较高概率产生观察数据的系统发生树。最大似然估计是一类完全基于统计的系统发生树重建方法的代表。

3.3、高斯分布-概率密度函数

最常见的连续概率分布是正态分布,也叫高斯分布,而这正是我们所需要的,其概率密度函数如下:

正态分布 公式如下:

     

        随着参数μ和σ变化,概率分布也产生变化。 下面重要的步骤来了,我们要把一组数据误差出现的总似然,也就是一组数据之所以对应误差出现的整体可能性表达出来了,因为数据的误差我们假设服从一个高斯分布,并且通过截距项来平移整体分布的位置从而使得μ=0.

3.4、误差总似然, 最小二乘法MSE

这种最小二乘法估计,其实我们就可以认为,假定了误差服从正太分布,认为样本误差的出现是随机的,独立的,使用最大似然估计思想,利用损失函数最小化 MSE 就能求出最优解!所以反过来说,如果我们的数据误差不是互相独立的,或者不是随机出现的,那么就不适合去假设为正太分布,就不能去用正太分布的概率密度函数带入到总似然的函数中,故而就不能用 MSE 作为损失函数去求解最优解了!
还有譬如假设误差服从泊松分布,或其他分布那就得用其他分布的概率密度函数去推导出损失函数了。
所以有时我们也可以把线性回归看成是广义线性回归。比如,逻辑回归,泊松回归都属于广义线性回归的一种,这里我们线性回归可以说是最小二乘线性回归

4、线性回归实战

4.1、简单线性回归

一元一次方程,在机器学习中一元表示一个特征,b表示截距,y表示目标值。

import numpy as np
import matplotlib.pyplot as plt
# 转化成矩阵
X = np.linspace(0,10,num = 30).reshape(-1,1)
# 斜率和截距,随机生成
w = np.random.randint(1,5,size = 1)
b = np.random.randint(1,10,size = 1)
# 根据一元一次方程计算目标值y,并加上“噪声”,数据有上下波动~
y = X * w + b + np.random.randn(30,1)
plt.scatter(X,y)
# 重新构造X,b截距,相当于系数w0,前面统一乘以1
X = np.concatenate([X,np.full(shape = (30,1),fill_value= 1)],axis = 1)
# 正规方程求解
θ = np.linalg.inv(X.T.dot(X)).dot(X.T).dot(y).round(2)  # 根据公式计算
print('一元一次方程真实的斜率和截距是:',w, b)
print('通过正规方程求解的斜率和截距是:',θ)
# 根据求解的斜率和截距绘制线性回归线型图
plt.plot(X[:,0],X.dot(θ),color = 'green')

4.2、多元线性回归

二元一次方程,x1, x2相当于两个特征,b是方程截距

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d.axes3d import Axes3D # 绘制三维图像
# 转化成矩阵
x1 = np.random.randint(-150,150,size = (300,1))
x2 = np.random.randint(0,300,size = (300,1))
# 斜率和截距,随机生成
w = np.random.randint(1,5,size = 2)
b = np.random.randint(1,10,size = 1)
# 根据二元一次方程计算目标值y,并加上“噪声”,数据有上下波动~
y = x1 * w[0] + x2 * w[1] + b + np.random.randn(300,1)
fig = plt.figure(figsize=(9,6))
ax = Axes3D(fig)
ax.scatter(x1,x2,y) # 三维散点图
ax.view_init(elev=10, azim=-20) # 调整视角
# 重新构造X,将x1、x2以及截距b,相当于系数w0,前面统一乘以1进行数据合并
X = np.concatenate([x1,x2,np.full(shape = (300,1),fill_value=1)],axis = 1)
w = np.concatenate([w,b])
# 正规方程求解
θ = np.linalg.inv(X.T.dot(X)).dot(X.T).dot(y).round(2)  # 计算公式
print('二元一次方程真实的斜率和截距是:',w)
print('通过正规方程求解的斜率和截距是:',θ.reshape(-1))
# # 根据求解的斜率和截距绘制线性回归线型图
x = np.linspace(-150,150,100)
y = np.linspace(0,300,100)
z = x * θ[0] + y * θ[1] + θ[2]
ax.plot(x,y,z ,color = 'red')

 4.3、机器学习库scikit-learn

一元线性回归:

from sklearn.linear_model import LinearRegression   
import numpy as np
import matplotlib.pyplot as plt
# 转化成矩阵
X = np.linspace(0,10,num = 30).reshape(-1,1)
# 斜率和截距,随机生成
w = np.random.randint(1,5,size = 1)
b = np.random.randint(1,10,size = 1)
# 根据一元一次方程计算目标值y,并加上“噪声”,数据有上下波动~
y = X * w + b + np.random.randn(30,1)
plt.scatter(X,y)
# 使用scikit-learn中的线性回归求解
model = LinearRegression()   # 使用模型
model.fit(X,y)
w_ = model.coef_
b_ = model.intercept_
print('一元一次方程真实的斜率和截距是:',w, b)
print('通过scikit-learn求解的斜率和截距是:',w_,b_)
plt.plot(X,X.dot(w_) + b_,color = 'green')

 多元线性回归:

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d.axes3d import Axes3D
from sklearn.linear_model import LinearRegression  
# 转化成矩阵
x1 = np.random.randint(-150,150,size = (300,1))
x2 = np.random.randint(0,300,size = (300,1))
# 斜率和截距,随机生成
w = np.random.randint(1,5,size = 2)
b = np.random.randint(1,10,size = 1)
# 根据二元一次方程计算目标值y,并加上“噪声”,数据有上下波动~
y = x1 * w[0] + x2 * w[1] + b + np.random.randn(300,1)
fig = plt.figure(figsize=(9,6))
ax = Axes3D(fig)
ax.scatter(x1,x2,y) # 三维散点图
ax.view_init(elev=10, azim=-20) # 调整视角
# 重新构造X,将x1、x2以及截距b,相当于系数w0,前面统一乘以1进行数据合并
X = np.concatenate([x1,x2],axis = 1)
# 使用scikit-learn中的线性回归求解
model = LinearRegression()   # 使用模型
model.fit(X,y)
w_ = model.coef_.reshape(-1)
b_ = model.intercept_
print('二元一次方程真实的斜率和截距是:',w,b)     # [2, 4] [1]
print('通过scikit-learn求解的斜率和截距是:',w_,b_)   # [1.99997 3.99976] [0.88129]
# 根据求解的斜率和截距绘制线性回归线型图
x = np.linspace(-150,150,100)
y = np.linspace(0,300,100)
z = x * w_[0] + y * w_[1] + b_
ax.plot(x,y,z ,color = 'green')

相关文章:

05- 线性回归算法 (LinearRegression) (算法)

线性回归算法(LinearRegression)就是假定一个数据集合预测值与实际值存在一定的误差, 然后假定所有的这些误差值符合正太分布, 通过方程求这个正太分布的最小均值和方差来还原原数据集合的斜率和截距。当误差值无限接近于0时, 预测值与实际值一致, 就变成了求误差的极小值。 fr…...

JAVA补充知识01之枚举enum

目录 1. 枚举类的使用 1.1 枚举类的理解 1.2 举例 1.3 开发中的建议&#xff1a; 1.4 Enum中的常用方法 1.5 熟悉Enum类中常用的方法 1.6 枚举类实现接口的操作 1.7 jdk5.0之前定义枚举类的方式 &#xff08;了解即可&#xff09; 1.8 jdk5.0之后定义枚举类的方式 1…...

jenkins下配置maven

1. 先在jenkins服务器上安装maven 下载-解压-重命名-启动 [rootVM-0-12-centos local]# wget https://mirrors.aliyun.com/apache/maven/maven-3/3.9.0/binaries/apache-maven-3.9.0-bin.tar.gz [rootVM-0-12-centos local]# tar xf apache-maven-3.9.0-bin.tar.gz [rootVM-0…...

春季开学即将到来!大学生活必备数码清单奉上

马上就要开学了&#xff0c;你的返校装备是否已经准备齐全了呢&#xff1f;对于高校学生来说&#xff0c;很多数码产品都属于必备装备&#xff0c;比如下面这几款产品就受到了大量年轻消费者的喜爱&#xff0c;在它们的帮助下能够让大家的学习时光变得更快乐。1、不入耳黑科技骨…...

ubuntu18.04 天选2 R95900hx 3060显卡驱动安装

天选2 R95900hx 3060显卡驱动安装需求问题解决内核集显显卡驱动需求 外接显示器&#xff0c;安装nvidia驱动 问题 由于一开始直接在软件和更新中附加读懂安装了nvidia-470&#xff0c;导致系统黑屏。 解决 grub页面系统选择进入ubuntu recovery模式&#xff0c;选择root&a…...

Harbor安装部署实战详细手册

文章目录前言一、安装docker二、安装docker-compose1.下载2.赋权3.测试三、安装harbor1.下载2.解压3.修改配置文件4.部署5.配置开机自启动6.登录验证7.补充说明四、harbor使用问题1.docker login问题&#xff1a;Error response from daemon: Get https://: http: server gave …...

华为OD机试真题JAVA实现【箱子之形摆放】真题+解题思路+代码(20222023)

🔥系列专栏 华为OD机试(JAVA)真题目录汇总华为OD机试(Python)真题目录汇总华为OD机试(C++)真题目录汇总华为OD机试(JavaScript)真题目录汇总文章目录 🔥系列专栏题目输入输出描述示例一输入输出说明备注解题思路Code运行结果版权说明...

华为OD机试 - 事件推送(Python)| 真题+思路+考点+代码+岗位

事件推送 题目 同一个数轴 X 上有两个点的集合 A={A1, A2, …, Am} 和 B={B1, B2, …, Bn}, Ai 和 Bj 均为正整数,A、B 已经按照从小到大排好序,A、B 均不为空, 给定一个距离 R (正整数), 列出同时满足如下条件的所有(Ai, Bj)数对: Ai <= BjAi, Bj 之间的距离小于…...

【Linux】信号量

&#x1f387;Linux&#xff1a; 博客主页&#xff1a;一起去看日落吗分享博主的在Linux中学习到的知识和遇到的问题博主的能力有限&#xff0c;出现错误希望大家不吝赐教分享给大家一句我很喜欢的话&#xff1a; 看似不起波澜的日复一日&#xff0c;一定会在某一天让你看见坚持…...

android-java同步方法和异步方法

接口 Java接口是一系列方法的声明&#xff0c;是一些方法特征的集合&#xff0c;一个接口只有方法的特征没有方法的实现&#xff0c;因此这些方法可以在不同的地方被不同的类实现&#xff0c;而这些实现可以具有不同的行为&#xff08;功能&#xff09;。 两种含义&#xff1a…...

Flask入门(5):请求和响应

目录5.请求和响应5.1 请求5.2 响应5.请求和响应 5.1 请求 request对象封装解析了请求报文中的数据&#xff0c;其大部分功能是由依赖包werkzeug完成的&#xff0c;并且每个request对象都是线程隔离的&#xff0c;保证了数据的安全性。 request对象的属性 1.request.method …...

记进组后第五次组会汇报

2023年2月14日 日记一、小组组会二、实验室组会1、汇报内容&#xff08;1&#xff09;参考文献&#xff08;2&#xff09;CQF机制a.研究现状b.相关思考&#xff08;3&#xff09;研究计划2、汇报反馈一、小组组会 上午十点整&#xff0c;小组组会开始&#xff0c;有两个同学我…...

nil Foundation的Placeholder证明系统(2)

前序博客&#xff1a; nil Foundation的Placeholder证明系统&#xff08;1&#xff09; nil; Foundation团队2022年11月论文《Placeholder证明系统》。[2022年11月29日版本] 8. 优化 8.1 Batched FRI 不同于单独检查每个commitment&#xff0c;可对其进行FRI聚合。如对多项…...

QHash源码解读

QT版本 v5.12.10 元素 // 重点说明QHashData的函数&#xff0c;QHashData是QHash的基础 struct QHashData {struct Node {Node *next;uint h;};Node *fakeNext; // 永为nullNode **buckets; // Node *数组QtPrivate::RefCount ref;int size; // node个数int nodeSize; /…...

【Unity细节】RigidBody中Dynamic和Kinematic的区别

&#x1f468;‍&#x1f4bb;个人主页&#xff1a;元宇宙-秩沅 hallo 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! 本文由 秩沅 原创 收录于专栏&#xff1a;unity细节和bug ⭐Dynamic和Kinematic的区别⭐ 文章目录⭐Dynamic和Kinematic的区别⭐&#x1f3…...

【C++、数据结构】哈希 — 闭散列与哈希桶的模拟实现

文章目录&#x1f4d6; 前言1. STL中哈希表的两个应用⚡1.1 &#x1f31f;unordered_set1.2 &#x1f31f;unordered_map2. 常见查找的性能对比&#x1f4a5;3. 哈希表模拟实现&#x1f3c1;3.1 哈希的概念&#xff1a;3.2 哈希函数&#xff1a;3.3 哈希冲突&#xff1a;3.4 闭…...

vue 开发环境 卸载node 版本 切换新的 node 版本 mac电脑

注意&#xff1a;操作的机器当前是mac&#xff0c;先卸载&#xff0c;再安装 1.查看现有 node 版本 node -v2.卸载现有 node 版本&#xff0c; 1.卸载从node官网下载pkg安装的node sudo rm -rf /usr/local/{bin/{node,npm},lib/node_modules/npm,lib/node,share/man/*/node…...

在Linux和Windows上安装Nacos-2.1.1

记录&#xff1a;377场景&#xff1a;在CentOS 7.9操作系统安装Nacos-2.1.1。在Windows操作系统上安装Nacos-2.1.1。Nacos&#xff1a;Nacos: Dynamic Naming and Configuration Service。Nacos提供动态配置服务、服务发现及管理、动态DNS服务功能。版本&#xff1a;JDK 1.8 Na…...

解决QML debugging is enabled.Only use this in a safe environment.警告

系列文章目录 文章目录系列文章目录前言一、警告原因二、解决办法参考前言 我试图运行一个非常简单的程序&#xff0c;当单击退出按钮时关闭窗口&#xff0c;但获取以下输出&#xff0c;前提是包含按钮的应用程序窗口不显示&#xff1a; 您已启用QML调试(实际上它默认启用)&…...

华为OD机试真题JAVA实现【N进制减法】真题+解题思路+代码(20222023)

🔥系列专栏 华为OD机试(JAVA)真题目录汇总华为OD机试(Python)真题目录汇总华为OD机试(C++)真题目录汇总华为OD机试(JavaScript)真题目录汇总文章目录 🔥系列专栏题目输入输出描述示例一输入输出说明解题思路Code代码运行结果版权说明<...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例

使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件&#xff0c;常用于在两个集合之间进行数据转移&#xff0c;如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model&#xff1a;绑定右侧列表的值&…...

连锁超市冷库节能解决方案:如何实现超市降本增效

在连锁超市冷库运营中&#xff0c;高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术&#xff0c;实现年省电费15%-60%&#xff0c;且不改动原有装备、安装快捷、…...

《通信之道——从微积分到 5G》读书总结

第1章 绪 论 1.1 这是一本什么样的书 通信技术&#xff0c;说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号&#xff08;调制&#xff09; 把信息从信号中抽取出来&am…...

力扣-35.搜索插入位置

题目描述 给定一个排序数组和一个目标值&#xff0c;在数组中找到目标值&#xff0c;并返回其索引。如果目标值不存在于数组中&#xff0c;返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...

20个超级好用的 CSS 动画库

分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码&#xff0c;而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库&#xff0c;可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画&#xff0c;可以包含在你的网页或应用项目中。 3.An…...

Git常用命令完全指南:从入门到精通

Git常用命令完全指南&#xff1a;从入门到精通 一、基础配置命令 1. 用户信息配置 # 设置全局用户名 git config --global user.name "你的名字"# 设置全局邮箱 git config --global user.email "你的邮箱example.com"# 查看所有配置 git config --list…...

【p2p、分布式,区块链笔记 MESH】Bluetooth蓝牙通信 BLE Mesh协议的拓扑结构 定向转发机制

目录 节点的功能承载层&#xff08;GATT/Adv&#xff09;局限性&#xff1a; 拓扑关系定向转发机制定向转发意义 CG 节点的功能 节点的功能由节点支持的特性和功能决定。所有节点都能够发送和接收网格消息。节点还可以选择支持一个或多个附加功能&#xff0c;如 Configuration …...

【前端异常】JavaScript错误处理:分析 Uncaught (in promise) error

在前端开发中&#xff0c;JavaScript 异常是不可避免的。随着现代前端应用越来越多地使用异步操作&#xff08;如 Promise、async/await 等&#xff09;&#xff0c;开发者常常会遇到 Uncaught (in promise) error 错误。这个错误是由于未正确处理 Promise 的拒绝&#xff08;r…...

Vue ③-生命周期 || 脚手架

生命周期 思考&#xff1a;什么时候可以发送初始化渲染请求&#xff1f;&#xff08;越早越好&#xff09; 什么时候可以开始操作dom&#xff1f;&#xff08;至少dom得渲染出来&#xff09; Vue生命周期&#xff1a; 一个Vue实例从 创建 到 销毁 的整个过程。 生命周期四个…...

6个月Python学习计划 Day 16 - 面向对象编程(OOP)基础

第三周 Day 3 &#x1f3af; 今日目标 理解类&#xff08;class&#xff09;和对象&#xff08;object&#xff09;的关系学会定义类的属性、方法和构造函数&#xff08;init&#xff09;掌握对象的创建与使用初识封装、继承和多态的基本概念&#xff08;预告&#xff09; &a…...