当前位置: 首页 > news >正文

【大数据】HADOOP-YARN容量调度器多队列配置详解实战

简介

Capacity调度器具有以下的几个特性:

  • 层次化的队列设计,这种层次化的队列设计保证了子队列可以使用父队列设置的全部资源。这样通过层次化的管理,更容易合理分配和限制资源的使用。
  • 容量保证,队列上都会设置一个资源的占比,这样可以保证每个队列都不会占用整个集群的资源。
    安全,每个队列有严格的访问控制。用户只能向自己的队列里面提交任务,而且不能修改或者访问其他队列的任务。
  • 弹性分配,空闲的资源可以被分配给任何队列。当多个队列出现争用的时候,则会按照比例进行平衡。
    多租户租用,通过队列的容量限制,多个用户就可以共享同一个集群,同时保证每个队列分配到自己的容量,提高利用率。
  • 操作性,yarn支持动态修改调整容量、权限等的分配,可以在运行时直接修改。还提供给管理员界面,来显示当前的队列状况。管理员可以在运行时,添加一个队列;但是不能删除一个队列。管理员还可以在运行时暂停某个队列,这样可以保证当前的队列在执行过程中,集群不会接收其他的任务。如果一个队列被设置成了stopped,那么就不能向他或者子队列上提交任务了。
  • 基于资源的调度,协调不同资源需求的应用程序,比如内存、CPU、磁盘等等。

需求

default 队列占总内存的40%,最大资源容量占总资源的60%
ops 队列占总内存的60%,最大资源容量占总资源的80%

配置队列优先级策略

配置多队列的容量调度器

  1. 在yarn-site.xml里面配置使用容量调度器
<!-- 使用容量调度器 -->
<property><name>yarn.resourcemanager.scheduler.class</name>   <value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.CapacityScheduler</value>
</property>
  1. 在capacity-scheduler.xml中配置如下:
<?xml version="1.0" encoding="UTF-8"?>
<configuration><!-- 表示集群最大app数 --><property><name>yarn.scheduler.capacity.maximum-applications</name><value>10000</value></property><!-- 表示集群上某队列可使用的资源比例 目的是为了限制过多的am数,即app数 --><property><name>yarn.scheduler.capacity.maximum-am-resource-percent</name><value>0.1</value></property><!-- 配置指定调度器使用的资源计算器 --><!-- DefaultResourseCalculator 默认值,只使用内存进行比较 --><!-- DominantResourceCalculator 多维度资源计算,内存、cpu --><property><name>yarn.scheduler.capacity.resource-calculator</name><value>org.apache.hadoop.yarn.util.resource.DominantResourceCalculator</value></property><!-- root队列中有哪些子队列--><property><name>yarn.scheduler.capacity.root.queues</name><value>default,ops</value></property><!-- *******************default队列*********************** --><!-- default 队列占用的资源容量百分比 40% --><property><name>yarn.scheduler.capacity.root.default.capacity</name><value>40</value></property><!-- default 队列占用的最大资源容量百分比 60%--><property><name>yarn.scheduler.capacity.root.default.maximum-capacity</name><value>60</value></property><!-- 允许单个用户最多可获取的队列资源的倍数,默认值1,确保单个用户无论集群有多空闲,永远不会占用超过队列配置的资源当值大于1时,用户可使用的资源将超过队列配置的资源,但应该不能超过队列配置的最大资源--><property><name>yarn.scheduler.capacity.root.default.user-limit-factor</name><value>1</value></property><!-- 队列状态 --><property><name>yarn.scheduler.capacity.root.default.state</name><value>RUNNING</value></property><!-- 限定哪些admin用户可向root队列中提交应用程序 --><property><name>yarn.scheduler.capacity.root.default.acl_submit_applications</name><value>*</value></property><!-- 为root队列指定一个管理员,该管理员可控制该队列的所有应用程序,比如杀死任意一个应用程序等 --><property><name>yarn.scheduler.capacity.root.default.acl_administer_queue</name><value>*</value></property><!-- 配置哪些用户有权配置提交任务优先级 --><property><name>yarn.scheduler.capacity.root.default.acl_application_max_priority</name><value>*</value></property><!-- 任务的超时时间设置:yarn application -appId ${appId} -updateLifeTime Timeout --><!-- 如果application指定了超时时间,则提交到该队列的application能够制定的最大超时时间不能超过该值。--><property><name>yarn.scheduler.capacity.root.default.maximum-application-lifetime</name><value>-1</value></property><!-- 如果application没有指定超时时间,则用default-application-lifetime 作为默认值 --><property><name>yarn.scheduler.capacity.root.default.default-application-lifetime</name><value>-1</value></property><!-- *******************hive队列*********************** --><!-- hive 队列占用的资源容量百分比 60% --><property><name>yarn.scheduler.capacity.root.ops.capacity</name><value>60</value></property><!-- default 队列占用的最大资源容量百分比 80%--><property><name>yarn.scheduler.capacity.root.ops.maximum-capacity</name><value>80</value></property><!-- 允许单个用户最多可获取的队列资源的倍数,默认值1,确保单个用户无论集群有多空闲,永远不会占用超过队列配置的资源当值大于1时,用户可使用的资源将超过队列配置的资源,但应该不能超过队列配置的最大资源--><property><name>yarn.scheduler.capacity.root.ops.user-limit-factor</name><value>1</value></property><!-- 队列状态 --><property><name>yarn.scheduler.capacity.root.ops.state</name><value>RUNNING</value></property><!-- 限定哪些admin用户可向root队列中提交应用程序 --><property><name>yarn.scheduler.capacity.root.ops.acl_submit_applications</name><value>*</value></property><!-- 为root队列指定一个管理员,该管理员可控制该队列的所有应用程序,比如杀死任意一个应用程序等 --><property><name>yarn.scheduler.capacity.root.ops.acl_administer_queue</name><value>*</value></property><!-- 配置哪些用户有权配置提交任务优先级 --><property><name>yarn.scheduler.capacity.root.ops.acl_application_max_priority</name><value>*</value></property><!-- 任务的超时时间设置:yarn application -appId ${appId} -updateLifeTime Timeout --><!-- 如果application指定了超时时间,则提交到该队列的application能够制定的最大超时时间不能超过该值。--><property><name>yarn.scheduler.capacity.root.ops.maximum-application-lifetime</name><value>-1</value></property><!-- 如果application没有指定超时时间,则用default-application-lifetime 作为默认值 --><property><name>yarn.scheduler.capacity.root.opsdefault-application-lifetime</name><value>-1</value></property><!--CapacityScheduler尝试调度机本地容器之后错过的调度机会数。通常,应该将其设置为集群中的节点数。默认情况下在一个架构中设置大约40个节点。应为正整数值。--><property><name>yarn.scheduler.capacity.node-locality-delay</name><value>40</value></property><!--在节点本地延迟时间之外的另外的错过的调度机会的次数,在此之后,CapacityScheduler尝试调度非切换容器而不是机架本地容器.例如:在node-locality-delay = 40和rack-locality-delay = 20的情况下,调度器将在40次错过机会之后尝试机架本地分配,在40 + 20 = 60之后错过机会.使用-1作为默认值,禁用此功能.在这种情况下,根据资源请求中指定的容器和唯一位置的数量以及集群的大小,计算分配关闭交换容器的错失机会的数量--><property><name>yarn.scheduler.capacity.rack-locality-additional-delay</name><value>-1</value></property><!-- 此配置指定用户或组到特定队列的映射 --><property><name>yarn.scheduler.capacity.queue-mappings</name><value>u:root:default,g:root:default,u:%user:%user</value></property><property><name>yarn.scheduler.capacity.queue-mappings-override.enable</name><value>false</value></property><property><name>yarn.scheduler.capacity.per-node-heartbeat.maximum-offswitch-assignments</name><value>1</value></property><property><name>yarn.scheduler.capacity.application.fail-fast</name><value>false</value></property><property><name>yarn.scheduler.capacity.workflow-priority-mappings</name><value></value></property><property><name>yarn.scheduler.capacity.workflow-priority-mappings-override.enable</name><value>false</value></property>
</configuration>
  1. 同步到其他节点后,刷新配置
bin/yarn rmadmin -refreshQueues
  1. 查看界面展示
    在这里插入图片描述
  2. 提交任务,查看队列资源占比情况
    提交任务
bin/spark-submit --class org.apache.spark.examples.SparkPi --master yarn --deploy-mode cluster --driver-memory 2g --executor-memory 2g --executor-cores 1 --num-executors 1 --queue default examples/jars/spark-examples_2.12-3.2.1.jar 100

–driver-memory 2g --executor-memory 2g --executor-cores 1 --num-executors 1
在这里插入图片描述
在这里插入图片描述
可以看到 向YARN的资源需求是:
amMemory = 2048
amMemoryOverhead = 384

executorMemory = 2048
executorOffHeapMemory. = 0
executorMemoryOverhead = 384

amCores = 1

最终向YARN上申请AM的资源大小为:

am = amMemory + amMemoryOverhead = 2432
executor = executorMemory + executorMemoryOverhead = 2432

capability = <memory:2432,vCores:1>
由于配置的集群资源分配最小单位为1024MB, 因此需要向上取整, 即 3072 MB

这也是为甚么我明明申请的 资源 比较小,但是在yarn上显示的资源总不对,比实际申请的资源要高一些。资源比预期的要高。

这主要是yarn的资源计算是用DominantResourceCalculator来计算管理 cpu、内存的。

spark和yarn上申请的资源没有对的上。

所以最终的资源:
Driver 申请的资源 --driver-memory 2g 实际在yarn中AM申请的资源为 3g1c
Executor 申请的资源 --executor-memory 2g --executor-cores 1 --num-executors 1 实际在yarn中executor申请的资源为 3g1c

最终总的资源为 6g2c

在这里插入图片描述

同理再提交一下 1g1c的

bin/spark-submit --class org.apache.spark.examples.SparkPi --master yarn --deploy-mode cluster --driver-memory 1g --executor-memory 1g --executor-cores 1 --num-executors 2 --queue default examples/jars/spark-examples_2.12-3.2.1.jar 100

–driver-memory 1g --executor-memory 1g --executor-cores 1 --num-executors 2

在这里插入图片描述
所以最终的资源:

Driver 申请的资源 --driver-memory 1g 实际在yarn中AM申请的资源为 1g1c
Executor 申请的资源 --executor-memory 1g --executor-cores 1 --num-executors 2 实际在yarn中executor申请的资源为 4g2c

最终总的资源为 6g3c

  1. 验证队列的最大资源限制
bin/spark-submit --class org.apache.spark.examples.SparkPi --master yarn --deploy-mode cluster --driver-memory 2g --executor-memory 2g --executor-cores 2 --num-executors 5 --queue default examples/jars/spark-examples_2.12-3.2.1.jar 100

在这里插入图片描述
当内存需求超过队列最大资源时

bin/spark-submit --class org.apache.spark.examples.SparkPi --master yarn --deploy-mode cluster --driver-memory 2g --executor-memory 2g --executor-cores 2 --num-executors 6 --queue default examples/jars/spark-examples_2.12-3.2.1.jar 100

在这里插入图片描述

在这里插入图片描述
最终看到申请的资源可以超过队列配置的资源,但是不会超过最大的资源

spark申请的容器为 6 个,但是最终只启动了4个。

希望对正在查看文章的您有所帮助,记得关注、评论、收藏,谢谢您

相关文章:

【大数据】HADOOP-YARN容量调度器多队列配置详解实战

简介 Capacity调度器具有以下的几个特性&#xff1a; 层次化的队列设计&#xff0c;这种层次化的队列设计保证了子队列可以使用父队列设置的全部资源。这样通过层次化的管理&#xff0c;更容易合理分配和限制资源的使用。容量保证&#xff0c;队列上都会设置一个资源的占比&a…...

加密技术在android系统安全中的应用

前言android 系统安全内容总结 1、算法基础 算法基础参照linux的全盘加密与文件系统加密在android中的应用的2、预备知识 android系统安全特性用到加密算法的如下表:...

KNN&K-means从入门到实战

作者&#xff1a;王同学 来源&#xff1a;投稿 编辑&#xff1a;学姐 1. 基本概念 1.1 KNN k近邻法&#xff08;k-nearest neighbor&#xff0c;k-NN&#xff09;是一种基本分类与回归方法。 k近邻法的输入为实例的特征向量对应于特征空间的点&#xff1b;输出为实例的类别&…...

SpringBoot整合RabbitMQ

SpringBoot整合RabbitMQ&#xff0c;生产者 &#xff08;1&#xff09;创建maven项目 &#xff08;2&#xff09;引入依赖 <parent><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-parent</artifactId><versi…...

Hive---安装教程

Hive安装教程 Hive属于Hadoop生态圈&#xff0c;所以Hive必须运行在Hadoop上 文章目录Hive安装教程上传安装包解压并且更名修改 /etc/profile创建hive-site.xml将mysql的jar包放入Hive库中开启刷新配置文件hadoop开启mysql初始化启动hive上传安装包 将安装包上传到/opt/insta…...

MySQL作业四

学生表&#xff1a;Student (Sno, Sname, Ssex , Sage, Sdept) 学号&#xff0c;姓名&#xff0c;性别&#xff0c;年龄&#xff0c;所在系 Sno为主键 课程表&#xff1a;Course (Cno, Cname,) 课程号&#xff0c;课程名 Cno为主键 学生选课表&#xff1a;SC (Sno, Cno, Score)…...

云原生安全检测器 Narrows(CNSI)的部署和使用

近日&#xff0c; 云原生安全检测器 Narrows&#xff08;Cloud Native Security Inspector&#xff0c;简称CNSI&#xff09;发布了0.2.0版本。 &#xff08;https://github.com/vmware-tanzu/cloud-native-security-inspector&#xff09; 此项目旨在对K8s集群中的工作负载进…...

【并发编程】【3】Java线程 创建线程与线程运行

并发编程 3.Java线程 本章内容 创建和运行线程 查看线程 线程 API 线程状态 3.1 创建和运行线程 方法一&#xff0c;直接使用 Thread // 创建线程对象 Thread t new Thread() {public void run() {// 要执行的任务} }; // 启动线程 t.start();例如&#xff1a; // 构…...

Ambire 最新消息——2023 年 1 月

大家好&#xff0c;这里是我们在过去几周所做的一切的快速回顾。 发展 整个钱包的交易模拟和余额预测 我们推出了一项真正改变加密钱包 UX 游戏规则的功能&#xff1a;Ambire 现在向用户显示他们的钱包余额将如何更新&#xff0c;甚至在签署交易之前。 这项新功能可以分解为 Am…...

【kubeflow | 镜像源的解决方法——脚本】

20230214 方式一&#xff1a;获取所有镜像列表&#xff0c;自行外网拉取下载 获取KF所需镜像列表脚本 Offical docs for getting all kubeflow images curl https://gist.githubusercontent.com/Jason-CKY/7d7056ce261c6d606585f05218230037/raw/5c27297efdf6424cd9679b9f7…...

function calling convention(函数调用约定)

函数调用约定 函数调用约定,是指当一个函数被调用时,函数的参数会被传递给被调用的函数和返回值会被返回给调用函数。函数的调用约定就是描述参数是怎么传递和由谁平衡...

errgroup 原理简析

golang.org/x/sync/errgroup errgroup提供了一组并行任务中错误采集的方案。 先看注释 Package errgroup provides synchronization, error propagation, and Context cancelation for groups of goroutines working on subtasks of a common task. Group 结构体 // A Gro…...

Centos7.6 下 Docker 安装

Docker的自动化安装 官方的一键安装方式&#xff1a; curl -fsSL https://get.docker.com | bash -s docker --mirror Aliyun 国内 daocloud一键安装命令&#xff1a; curl -sSL https://get.daocloud.io/docker | sh Docker手动安装 手动安装Docker分三步&#xff1a;卸…...

C++11--lambda表达式

目录 lambda表达式的概念 lambda表达式语法 lambda表达式的书写格式 捕捉列表 参数列表 mutable 返回值类型 函数体 lambda表达式交换两个数 函数对象与lambda表达式 lambda表达式的概念 lambda表达式是一个匿名函数 它能让代码更加地简洁 提高了代码可读性 首先定义…...

四【Spring框架】

目录一 Spring概述二 .Spring 的体系结构三 Spring的开发环境3.1 配置pom.xml文件四 项目案例&#xff1a;4.1 创建实体类4.2 在pom.xml中引入依赖4.3 配置Spring-config.xml文件4.4 Test✅作者简介&#xff1a;Java-小白后端开发者 &#x1f96d;公认外号&#xff1a;球场上的…...

树与二叉树 总复习

一、树的定义 树是一个有n个&#xff08;n>0&#xff09;结点的有限集合。 如果n0&#xff0c;称为空树&#xff1b; 如果n>0&#xff0c;称为非空树&#xff0c;有且仅有一个特定的称为根Root的结点&#xff08;无直接前驱&#xff09; 如果n>1,除了根节点外&…...

window10安装MySQL数据库

准备好软件MySql的下载参考&#xff1a;(1137条消息) mysql下载与安装过程_weixin_40396510的博客-CSDN博客_mysql数据库下载安装(1137条消息) 安装MySQL的常见问题_二木成林的博客-CSDN博客_sc不是内部或外部命令,也不是可运行的程序解压要C盘&#xff08;自定义&#xff0c;本…...

羊了个羊游戏开发教程3:卡牌拾取和消除

本文首发于微信公众号&#xff1a; 小蚂蚁教你做游戏。欢迎关注领取更多学习做游戏的原创教程资料&#xff0c;每天学点儿游戏开发知识。嗨&#xff01;大家好&#xff0c;我是小蚂蚁。终于要写第三篇教程了&#xff0c;中间拖的时间有点儿长&#xff0c;以至于我的好几位学员等…...

SHA1详解

目录 一、介绍 二、与MD5的区别 1、对强行攻击的安全性 2、对密码分析的安全性 3、速度 三、应用 1、文件指纹 2、Git中标识对象 四、算法原理 1、填充消息 2、消息处理 3、数据运算 &#xff08;1&#xff09;链接变量 &#xff08;2&#xff09;步函数 一、介绍…...

Go并发介绍及其使用

1. goroutine Go语言通过go关键字来启动一个goroutine。注意&#xff1a;go关键字后面必须跟一个函数&#xff0c;不能是语句或者其他东西&#xff0c;函数的返回值被忽略。 goroutine有如下特性&#xff1a; go的执行是非阻塞的&#xff0c;不会等待。go后面的函数的返回值…...

树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频

使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...

VTK如何让部分单位不可见

最近遇到一个需求&#xff0c;需要让一个vtkDataSet中的部分单元不可见&#xff0c;查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行&#xff0c;是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示&#xff0c;主要是最后一个参数&#xff0c;透明度…...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词

Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵&#xff0c;其中每行&#xff0c;每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid&#xff0c;其中有多少个 3 3 的 “幻方” 子矩阵&am…...

rnn判断string中第一次出现a的下标

# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...

代码随想录刷题day30

1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币&#xff0c;另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额&#xff0c;返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...

A2A JS SDK 完整教程:快速入门指南

目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库&#xff…...

排序算法总结(C++)

目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指&#xff1a;同样大小的样本 **&#xff08;同样大小的数据&#xff09;**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...

实战三:开发网页端界面完成黑白视频转为彩色视频

​一、需求描述 设计一个简单的视频上色应用&#xff0c;用户可以通过网页界面上传黑白视频&#xff0c;系统会自动将其转换为彩色视频。整个过程对用户来说非常简单直观&#xff0c;不需要了解技术细节。 效果图 ​二、实现思路 总体思路&#xff1a; 用户通过Gradio界面上…...

【若依】框架项目部署笔记

参考【SpringBoot】【Vue】项目部署_no main manifest attribute, in springboot-0.0.1-sn-CSDN博客 多一个redis安装 准备工作&#xff1a; 压缩包下载&#xff1a;http://download.redis.io/releases 1. 上传压缩包&#xff0c;并进入压缩包所在目录&#xff0c;解压到目标…...

DeepSeek越强,Kimi越慌?

被DeepSeek吊打的Kimi&#xff0c;还有多少人在用&#xff1f; 去年&#xff0c;月之暗面创始人杨植麟别提有多风光了。90后清华学霸&#xff0c;国产大模型六小虎之一&#xff0c;手握十几亿美金的融资。旗下的AI助手Kimi烧钱如流水&#xff0c;单月光是投流就花费2个亿。 疯…...