当前位置: 首页 > news >正文

SVD求解两组多维点之间的欧式变换矩阵,及halcon代码实现

之前研究了二维点的仿射变换,用解矩阵的方式求解了两组二维点之间的变换矩阵。

学习了下SVD,看到可以用SVD求解两组多维点之间的欧式变换矩阵,当然也是个最优化问题。

这里的变换只有平移和旋转,没有缩放。

一、先说结论:

现在有两组点(2d,3d,或者多维都可以),

P=\left \{ {p_{1},...p_{n}}\right \},P^{'}=\left \{ {p^{'}_{1},...p^{'}_{n}}\right \},

 需要找到R和t,使得

p_{i}=Rp^{'}_{i}+t

一般没有完美解,需要找到最优解R和t,使得P'变换后的点和P误差最小。

操作步骤:

1,,求两组点质心位置p,p^{'},得到两组点去质心坐标

q_{i}=p_{i}-p,q^{'}_{i}=p^{'}_{i}-p^{'}

2,得到矩阵W

W=\sum_{i=1}^{n}q_{i}q^{'T}_{i}

3,对W进行奇异值分解

W=U\Sigma V^{T}

4.得到最优R和T

R=VU^{T}

T=p-Rp^{'}

二、用halcon代码来实现下

举例测试两组点P和Q

PX := [0.2,0.4,0.2,0.3]
PY := [0.4,0.6,0.8,0.6]
PZ := [0.6,0.8,0.6,0.5]
QX := [0.25,0.44,0.61,0.3]
QY := [0.32,0.56,0.82,0.4]
QZ := [0.4,0.18,0.6,0.51]

halcon代码实现如下

*两组3d点P和Q,每组4个点PX := [0.2,0.4,0.2,0.3]
PY := [0.4,0.6,0.8,0.6]
PZ := [0.6,0.8,0.6,0.5]
QX := [0.25,0.44,0.61,0.3]
QY := [0.32,0.56,0.82,0.4]
QZ := [0.4,0.18,0.6,0.51]*对P和Q去质心化处理
create_matrix (3, |PX|, [PX,PY,PZ], P)
mean_matrix (P, 'rows', PMean)
create_matrix(1,|PX|,1,Ones)
mult_matrix (PMean, Ones, 'AB', PSub)
sub_matrix(P,PSub,PShift)create_matrix(3,|QX|,[QX,QY,QZ],Q)
mean_matrix(Q,'rows', QMean)
create_matrix (1, |QX|, 0, Ones)
mult_matrix (QMean, Ones, 'AB', QSub)
sub_matrix (Q, QSub, QShift)*得到步骤2里的W矩阵,这里是3维点,左右W是个3*3矩阵
create_matrix (3, 3, 0, W)
for Index := 0 to |PX|-1 by 1get_sub_matrix (PShift, 0, Index, 3, 1, PVec)get_sub_matrix (QShift, 0, Index, 3, 1, QVec)transpose_matrix_mod (QVec)mult_matrix (PVec, QVec, 'AB', PQ)add_matrix_mod (W, PQ)    
endfor*对W进行svd分解
svd_matrix (W, 'full', 'both', U, S, V)*计算R
transpose_matrix_mod(U)
mult_matrix (V, U, 'AB', R)*计算R的行列式是否为1
determinant_matrix (R, 'general', Value)
if (Value < 0)get_value_matrix (V, [0,1,2], [2,2,2], Value1)set_value_matrix (V, [0,1,2], [2,2,2], [-Value1[0],-Value1[1],-Value1[2]])mult_matrix (V, U, 'AB', R)
endif*计算t
mult_matrix (R, PMean, 'AB', RPMean)
sub_matrix(QMean,RPMean,t)*得到最后的变换矩阵3*4
create_matrix(3,4,0,HomMat3DID)
set_sub_matrix (HomMat3DID, R, 0, 0)
set_sub_matrix(HomMat3DID, t, 0, 3)
get_full_matrix (HomMat3DID, HomMat3D)

得到的变换矩阵为

[-0.65053, 0.436583, 0.621455, -0.0714635, 0.519911, 0.852471, -0.0546402, -0.095308, -0.553627, 0.287556, -0.781542, 0.890677]

三、证明过程

    证明过程内容有点多,晚点整理整理再写

参考文章

三维重建(4)之SVD求解三维变换矩阵Rt(旋转+平移)_svd分解求旋转平移矩阵_明月醉窗台的博客-CSDN博客

使用SVD来求解优化问题最优值 - 知乎

相关文章:

SVD求解两组多维点之间的欧式变换矩阵,及halcon代码实现

之前研究了二维点的仿射变换&#xff0c;用解矩阵的方式求解了两组二维点之间的变换矩阵。 学习了下SVD&#xff0c;看到可以用SVD求解两组多维点之间的欧式变换矩阵&#xff0c;当然也是个最优化问题。 这里的变换只有平移和旋转&#xff0c;没有缩放。 一、先说结论&#…...

常用监控方案 Prometheus + Grafana 简单使用小结

文章目录 前言一、概念1.1 发展1.2 时序数据1.3 Metric 二、Prometheus2.1 架构2.2 配置2.3 查询语言PromQL2.4 Exporter 三、Grafana3.1 数据源3.2 权限3.3 面板可视化3.4 仪表盘 四、实战4.1 监控 Windows/Linux4.2 监控 JVM4.3 监控 MySQL4.4 监控 Springboot API 参考 前言…...

基于长短期神经网络LSTM的飞行轨迹跟踪预测,基于长短期神经网络LSTM的三维路径预测

目录 背影 摘要 LSTM的基本定义 LSTM实现的步骤 基于长短期神经网络LSTM的飞行轨迹跟踪 完整代码: https://download.csdn.net/download/abc991835105/87705046 效果图 结果分析 展望 参考论文 背影 路径追踪预测,对实现自动飞行驾驶拥有重要意义,长短期神经网络是一种改进…...

计算机组成原理-指令系统-指令格式及寻址方式

目录 一、指令的定义 1.1 扩展操作码指令格式 二、指令寻址方式 2.1 顺序寻址 2.2 跳跃寻址 三、 数据寻址 3.1 直接寻址 3.2 间接寻址 3.3 寄存器寻址 ​ 3.4 寄存器间接寻址 3.5 隐含寻址 3.6 立即寻址 3.7 偏移地址 3.7.1 基址寻址 3.7.2 变址寻址 3.7.3 相对寻址…...

【满分】【华为OD机试真题2023B卷 JAVAJS】经典屏保

华为OD2023(B卷)机试题库全覆盖,刷题指南点这里 经典屏保 知识点循环迭代编程基础 时间限制:1s 空间限制:256MB 限定语言:不限 题目描述: DVD机在视频输出时,为了保护电视显像管,在待机状态会显示“屏保动画”,如下图所示,DVD Logo在屏幕内来回运动,碰到边缘会反弹…...

Apache 网页与安全优化

目录 一&#xff1a;Apache网页优化概述 1、概述 2、优化内容 3、gzip介绍 4、Apache的压缩模块 5、mod_ gzip 模块与mod_ deflate 模块 二&#xff1a; 网页压缩 1.检查是否安装 mod_deflate 模块 2. 如果没有安装mod_deflate 模块&#xff0c;重新编译安装 Apache 添…...

Unity的IFilterBuildAssemblies:深入解析与实用案例

Unity IFilterBuildAssemblies Unity IFilterBuildAssemblies是Unity引擎中的一个非常有用的功能&#xff0c;它可以让开发者在构建项目时自定义哪些程序集需要被包含在构建中&#xff0c;哪些程序集需要被排除在建之外。这个功能可以帮助开发者更好地控制项目的构建过程&…...

分片架构,Redis Cluster 分析

分片架构解决的问题 通过堆机器&#xff0c;提升读写性能&#xff0c;与存储性能 分片架构设计要点 分片规则 选择Cardinality大的作为分片键&#xff0c;尽可能保证数据分布均匀 常见分片键&#xff1a; 基于主键&#xff08;业务型数据&#xff09;&#xff0c;基于时间…...

Linux-0.11 文件系统bitmap.c详解

Linux-0.11 文件系统bitmap.c详解 模块简介 该模块包含了两对函数&#xff0c;第一对是和i节点相关的free_inode()和new_inode()。第二对是和逻辑块相关的free_block()和new_block()。 函数详解 free_block void free_block(int dev, int block)该函数的作用是释放设备dev…...

【Linux】基本指令,拥抱Linux的第一步

[Linux]常见指令 Linux基本指令指令的本质ls指令pwd指令cd指令touch指令mkdir指令(重要)rmdir&&rm指令(重要)man指令&#xff08;重要&#xff09;cp指令&#xff08;重要&#xff09;mv指令&#xff08;重要&#xff09;重定向cat指令more指令less指令&#xff08;重要…...

CTF 2015: Search Engine-fastbin_dup_into_stack

参考&#xff1a; [1]https://gsgx.me/posts/9447-ctf-2015-search-engine-writeup/ [2]https://blog.csdn.net/weixin_38419913/article/details/103238963(掌握利用点&#xff0c;省略各种逆向细节) [3]https://bbs.kanxue.com/thread-267876.htm&#xff08;逆向调试详解&am…...

DRF之全局异常处理

一、REST framework 提供了异常处理&#xff0c;我们可以自定义异常处理函数 使用方式&#xff1a; from rest_framewoork.views import exception_handerdef custom_exception_handler(exc,context):# 先调用REST framework默认的异常处理方法获得标准错误响应对象response …...

AI创作工具的使用体验报告

下面是AI创作工具的使用体验报告&#xff0c;围绕以下三点展开&#xff1a; 一、工具的使用体验如何&#xff1f; CSDN博客AI创作工具是一款非常易用的工具&#xff0c;操作简单&#xff0c;可以很快地开始创建内容。在使用过程中&#xff0c;我发现它的语言模型很智能&#…...

C++算法模板(转自acwing)

快速排序算法模板 —— 模板题 AcWing 785. 快速排序 void quick_sort(int q[], int l, int r) {if (l > r) return;int i l - 1, j r 1, x q[l r >> 1];while (i < j){do i ; while (q[i] < x);do j -- ; while (q[j] > x);if (i < j) swap(q[i],…...

阿里云服务器最新优惠价格及最新收费标准(2023更新)

阿里云服务器收费标准分为包年包月和按量付费两种模式&#xff0c;包年包月是一种先付费后使用的计费方式&#xff0c;按量付费是一种先使用后付费的计费方式。选择包年包月的收费模式&#xff0c;用户可以提前预留资源&#xff0c;同时享受更大的价格优惠&#xff0c;帮您更大…...

React实现监听粘贴事件并获取粘贴板中的截图

目录 监听粘贴事件并获取粘贴板中的截图 TSX中给组件添加监听粘贴事件从粘贴板获取截图文件React监听事件 事件监听绑定的事件函数相关扩展 监听粘贴事件并获取粘贴板中的截图 TSX中给组件添加监听粘贴事件 ? 1 2 3 4 5 6 7 8 9 10 11 const pasteImageRef useRef<HTML…...

ISO_IEC_7816-3

介绍 ISO/IEC 7816 是一系列标准&#xff0c;规定了集成电路卡和此类卡的使用 互换。 这些卡是用于在外部世界和卡中的集成电路之间协商的信息交换的识别卡。 作为信息交换的结果&#xff0c;卡传递信息&#xff08;计算结果、存储的数据&#xff09;和/或修改其内容&#xff0…...

学习C#反射(Reflection)

反射提供描述程序集、模块和类型的对象&#xff08;Type 类型&#xff09;。 可以使用反射动态地创建类型的实例&#xff0c;将类型绑定到现有对象&#xff0c;或从现有对象中获取类型&#xff0c;然后调用其方法或访问器字段和属性。 如果代码中使用了特性(Attribute)&#xf…...

Spring Boot的核心组件和工作原理

引言 Spring Boot是一个快速构建应用程序的框架&#xff0c;通过自动化配置和约定优于配置的原则&#xff0c;可以快速地创建可独立运行的、生产级别的Spring应用程序。Spring Boot的核心组件是自动配置、起步依赖和嵌入式Web服务器。 在本文中&#xff0c;我们将深入了解Spr…...

【指针的深刻理解】

如何看待下面代码中的a变量? #include<stdio.h> int main() {int a 0;//同样的一个a&#xff0c;在不同的表达式中&#xff0c;名称是一样的&#xff0c;但是含义是完全不同的&#xff01;a 10;//使用的是a的空间&#xff1a;左值int b a; //使用的是a的内容&#x…...

云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?

大家好&#xff0c;欢迎来到《云原生核心技术》系列的第七篇&#xff01; 在上一篇&#xff0c;我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在&#xff0c;我们就像一个拥有了一块崭新数字土地的农场主&#xff0c;是时…...

java 实现excel文件转pdf | 无水印 | 无限制

文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...

全球首个30米分辨率湿地数据集(2000—2022)

数据简介 今天我们分享的数据是全球30米分辨率湿地数据集&#xff0c;包含8种湿地亚类&#xff0c;该数据以0.5X0.5的瓦片存储&#xff0c;我们整理了所有属于中国的瓦片名称与其对应省份&#xff0c;方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...

什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南

文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/55aefaea8a9f477e86d065227851fe3d.pn…...

vue3+vite项目中使用.env文件环境变量方法

vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量&#xff0c;这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...

20个超级好用的 CSS 动画库

分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码&#xff0c;而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库&#xff0c;可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画&#xff0c;可以包含在你的网页或应用项目中。 3.An…...

Golang——6、指针和结构体

指针和结构体 1、指针1.1、指针地址和指针类型1.2、指针取值1.3、new和make 2、结构体2.1、type关键字的使用2.2、结构体的定义和初始化2.3、结构体方法和接收者2.4、给任意类型添加方法2.5、结构体的匿名字段2.6、嵌套结构体2.7、嵌套匿名结构体2.8、结构体的继承 3、结构体与…...

苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会

在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...

VisualXML全新升级 | 新增数据库编辑功能

VisualXML是一个功能强大的网络总线设计工具&#xff0c;专注于简化汽车电子系统中复杂的网络数据设计操作。它支持多种主流总线网络格式的数据编辑&#xff08;如DBC、LDF、ARXML、HEX等&#xff09;&#xff0c;并能够基于Excel表格的方式生成和转换多种数据库文件。由此&…...

Java并发编程实战 Day 11:并发设计模式

【Java并发编程实战 Day 11】并发设计模式 开篇 这是"Java并发编程实战"系列的第11天&#xff0c;今天我们聚焦于并发设计模式。并发设计模式是解决多线程环境下常见问题的经典解决方案&#xff0c;它们不仅提供了优雅的设计思路&#xff0c;还能显著提升系统的性能…...