当前位置: 首页 > news >正文

【刷题之路】LeetCode 面试题 03.02. 栈的最小值

【刷题之路】LeetCode 面试题 03.02. 栈的最小值

  • 一、题目描述
  • 二、解题
    • 1、方法1——“辅助栈”
      • 1.1、思路分析
      • 1.2、代码实现

一、题目描述

原题连接: 面试题 03.02. 栈的最小值
题目描述:
请设计一个栈,除了常规栈支持的pop与push函数以外,还支持min函数,该函数返回栈元素中的最小值。执行push、pop和min操作的时间复杂度必须为O(1)。

示例:

MinStack minStack = new MinStack();
minStack.push(-2);
minStack.push(0);
minStack.push(-3);
minStack.getMin(); --> 返回 -3.
minStack.pop();
minStack.top(); --> 返回 0.
minStack.getMin(); --> 返回 -2.

二、解题

1、方法1——“辅助栈”

1.1、思路分析

既然题目应经明确要求了,min操作的时间复杂度必须为O(1),那我们想用遍历的方法来找到最小值的想法也就不现实了,那我们应该怎样解决这个O(1)的问题呢?
我们可以借助一个辅助的栈minStack,来存储当前栈中最小的值当我们每次执行push时候,就相应的将当前栈中最小的值也入到minStack中。即minStack的栈顶元素就是当前栈中最小的值:
在这里插入图片描述

具体的操作是:
1、当栈为空时,统一将新压入栈的元素压入到Stack和minStack。
2、当栈不为空时,如果新压入栈的元素小于minStack栈顶的元素,就将新的元素压入minStack中,否则则继续将minStack的栈顶元素压入minStack。

然后当我们要执行min操作时,就直接返回minStack的栈顶元素及可。
而当我们执行Pop弹栈操作时,则需要让Stack和minStack同步弹栈,以确保在任何情况下minStack的栈顶元素都为Stack中的最小值。
有的朋友可以会有疑问:难道要在栈中再嵌套定义一个子栈,然后执行各项操作的时候同时对这个子栈在执行相应的接口?
其实么这个必要,我们只需要在栈中额外定义一个存储结构来存储当前栈中的最小值即可。就比如我们选用数组来实现栈,那我们就再额外定义一个数组来存储栈中的最小值,比如下面这样:

typedef struct {int *data;int size; // 当前栈中的数据个数int capacity; // 当前栈的容量int *minStack; // 数组模拟一个栈,存储对应的最小值
} MinStack;

然后其实size和capacity是可以被data和minStack共用的,因为它们是同步Push和Pop操作的。

1.2、代码实现

有了以上思路,那我们写起代码来也就水到渠成了:
初始化工作:

typedef struct {int *data;int size;int capacity;int *minStack; // 数组模拟一个栈,存储对应的最小值
} MinStack;MinStack* minStackCreate() {MinStack *stack = (MinStack*)malloc(sizeof(MinStack));if (NULL == stack) {perror("malloc fail!\n");exit(-1);}stack->data = NULL;stack->minStack = NULL;stack->size = 0;stack->capacity = 0;return stack;
}

压栈接口Push:
因为data和minStack是同并且共用size和capacity的,所以在增容时候也需要同步增容data和minStack。

void minStackPush(MinStack* obj, int x) {// 先检查是否需要增容if (obj->size == obj->capacity) {int newCapacity = obj->capacity == 0 ? 10 : 2 * obj->capacity;int *temp1 = (int*)realloc(obj->data, newCapacity * sizeof(int));if (NULL == temp1) {perror("realloc fail!\n");exit(-1);}int *temp2 = (int*)realloc(obj->minStack, newCapacity * sizeof(int));if (NULL == temp2) {perror("realloc fail!\n");exit(-1);} obj->data = temp1;obj->minStack = temp2;obj->capacity = newCapacity;}if (obj->size == 0) {obj->minStack[obj->size] = x;} else {int min = x < obj->minStack[obj->size - 1] ? x : obj->minStack[obj->size - 1];obj->minStack[obj->size] = min;}obj->data[obj->size] = x;obj->size++;
}

弹栈Pop接口:

void minStackPop(MinStack* obj) {assert(obj->size != 0);obj->size--;
}

取栈顶Top接口:

int minStackTop(MinStack* obj) {assert(obj->size != 0);return obj->data[obj->size - 1];
}

求最小值min接口:

int minStackGetMin(MinStack* obj) {assert(obj->size != 0);return obj->minStack[obj->size - 1];
}

释放free接口:

void minStackFree(MinStack* obj) {free(obj->data);free(obj->minStack);obj->data = NULL;obj->minStack = NULL;obj->size = 0;obj->capacity = 0;
}

相关文章:

【刷题之路】LeetCode 面试题 03.02. 栈的最小值

【刷题之路】LeetCode 面试题 03.02. 栈的最小值 一、题目描述二、解题1、方法1——“辅助栈”1.1、思路分析1.2、代码实现 一、题目描述 原题连接&#xff1a; 面试题 03.02. 栈的最小值 题目描述&#xff1a; 请设计一个栈&#xff0c;除了常规栈支持的pop与push函数以外&am…...

如何处理图片排重(精准排重,相似排重)

图片相似度对比 1、需求 假如有一个图片池&#xff0c;存有1亿图片。给一张目标图片&#xff0c;在图片池中做匹配。 判断一张图片是否在图片池中出现过。&#xff08;完全一样&#xff09;判断有没有相似的出现过。比如两张图相似度90&#xff0c;两张图片是在描述一件事情。 …...

盐城北大青鸟“北大青鸟杯”IT精英挑战赛设中心评审隆重开赛

为积极响应北大青鸟总部开展第十届“北大青鸟杯”全国IT精英挑战赛的号召&#xff0c;成就学员们的IT梦想&#xff0c;“北大青鸟杯”IT精英挑战赛&#xff08;设计组&#xff09;盐城卓晨中心评审于2023年5月25日下午1:00在人才大厦306教室正式开赛&#xff01; ​ 赛前&a…...

Pluma 插件管理框架

1. 概述 Pluma 是一个用 C 开发的可用于管理插件的开源架构&#xff0c;其官网地址为&#xff1a;http://pluma-framework.sourceforge.net/。该架构是个轻量级架构&#xff0c;非常易于理解。 Pluma 架构有以下基本概念&#xff1a; 1&#xff09;插件的外在行为体现为一个…...

Leetcode11 盛最多水的容器

Leetcode11 盛最多水的容器 来源&#xff1a;力扣&#xff08;LeetCode&#xff09; 链接&#xff1a;https://leetcode.cn/problems/container-with-most-water/description 博主Github&#xff1a;https://github.com/GDUT-Rp/LeetCode 题目&#xff1a; 给定一个长度为 n…...

Java

FileOutputStream写数据的3种方式 void write(int b) //一次写一个字节的数据 void write(byte[] b) //一次写一个字节数组数据 void write(byte[] b, int off,int len) //一次写一个字节数组的部分数据 参数一:数组;参数二:起始索引 0;参数三:个数换行: windows:“\r\n” lin…...

第十四章行为性模式—策略模式

文章目录 命令模式解决的问题结构实例存在的问题适用场景 JDK源码解析 行为型模式用于描述程序在运行时复杂的流程控制&#xff0c;即描述多个类或对象之间怎样相互协作共同完成单个对象无法单独完成的任务&#xff0c;它涉及算法与对象间职责的分配。行为型模式分为类行为模式…...

Leaflet基本用法

使用 阿里云地理工具 获取相应的地理JSON数据&#xff0c;用于对地图边界绘制。 如何使用leaflet&#xff1f; 这里用HTML5进行操作&#xff1b; 因为我是用的是Leaflet库&#xff0c;所以要引入JavaScript 和 CSS 文件&#xff08;可参考官网https://leafletjs.com/&#x…...

Unity | HDRP高清渲染管线学习笔记:示例场景解析

目录 一、HDRP入门 1.HDRP设置 1.1 HDRP配置文件中的全部设置项 1.1.1 Rendering下的Lit Shader Mode 1.1.2 Lighting 下的Volumetrics&#xff08;体积光&#xff09;和Screen Space Reflection&#xff08;屏幕空间反射&#xff09; 2.离线渲染VS实时渲染 3.Volume组件 …...

【Netty】Netty 编码器(十三)

文章目录 前言一、MessageToByteEncoder 抽象类二、MessageToMessageEncoder 抽象类总结 前言 回顾Netty系列文章&#xff1a; Netty 概述&#xff08;一&#xff09;Netty 架构设计&#xff08;二&#xff09;Netty Channel 概述&#xff08;三&#xff09;Netty ChannelHan…...

Netty和Tomcat的区别、性能对比

文章目录 一、Netty和Tomcat有什么区别&#xff1f;二、为什么Netty受欢迎&#xff1f;三、Netty为什么并发高 &#xff1f; 一、Netty和Tomcat有什么区别&#xff1f; Netty和Tomcat最大的区别就在于通信协议&#xff0c;Tomcat是基于Http协议的&#xff0c;他的实质是一个基…...

chatgpt赋能python:Python函数调用局部变量-深入了解

Python函数调用局部变量-深入了解 函数调用局部变量是Python中的一个重要概念&#xff0c;特别是在大型项目中&#xff0c;其中多个函数共享相同变量时。在本文中&#xff0c;我们将深入探讨Python函数调用局部变量&#xff0c;并为您介绍一些实用技巧。 什么是Python函数调用…...

Android 12.0 NavigationBarView 导航栏 左边显示的修改

1.概述 在12.0定制化开发中,要求导航栏左边显示的定制化,这时需要了解导航栏的显示控制方向,然后修改显示方向 在10.0以后关于导航栏显示位置都是在DisplayPolicy.java中处理的所以查询相关的设置方法,然后修改导航栏显示方向2.NavigationBarView 导航栏 左边显示的修改的…...

Mybatis源码细节探究:二级缓存Cache对象是在什么时候创建的?

给自己的每日一句 不从恶人的计谋&#xff0c;不站罪人的道路&#xff0c;不坐亵慢人的座位&#xff0c;惟喜爱耶和华的律法&#xff0c;昼夜思想&#xff0c;这人便为有福&#xff01;他要像一棵树栽在溪水旁&#xff0c;按时候结果子&#xff0c;叶子也不枯干。凡他所做的尽…...

【数据库】无效数据:软件测试对无效数据的处理

目录 一、无效数据的常见场景 &#xff08;1&#xff09;测试阶段 &#xff08;2&#xff09;测试方法 二、无效数据的概念 三、无效数据的影响 四、无效数据的识别 五、无效数据的处理方法 &#xff08;1&#xff09;拒绝无效数据 ① 拒绝无效数据的概念 ② 拒绝…...

高精度电压源如何设计出来的

高精度电压源是一种用于提供高精度电压的电子设备&#xff0c;通常用于测量和控制系统。高精度电压源的设计是一个复杂的过程&#xff0c;需要考虑多个因素&#xff0c;包括电路设计、元件选型、测量误差、稳定性等。下面将从电路设计和元件选型两个方面&#xff0c;详细介绍高…...

混合属性mix-blend-mode不生效

下面的ABCDE是混合图层&#xff0c;box是他们的父级&#xff0c;一般浏览器支持都没什问题需要注意的是&#xff0c;确保父元素不是透明的&#xff0c; 我使用的时候发现给父元素rgba设置透明度这种方式没啥作用&#xff0c;还得是纯色&#xff0c;没去深究&#xff0c;设置纯色…...

测试计划编写说明

第1章 引言 1.1目的 简述本计划的目的,旨在说明各种测试阶段任务、人员分配和时间安排、工作规范等。 测试计划在策略和方法的高度说明如何计划、组织和管理测试项目。测试计划包含足够的信息使测试人员明白项目需要做什么是如何运作的。另外,清晰的文档结构能使任何一个读…...

Android 12.0Recent列表不显示某个app

1.概述 在12.0 的产品定制化开发中,在点击导航栏最近任务列表时,如果做到不显示某个app 呢 一种做法是在app中直接处理 一种做法是在framework中处理 接下来看这两种处理方法 1, app中处理 为该应用AndroidManifest xml文件中主MainActivity设置属性 android:excludeFromR…...

力扣sql中等篇练习(二十七)

力扣sql中等篇练习(二十七) 1 连续两年有3个及以上订单的产品 1.1 题目内容 1.1.1 基本题目信息 1.1.2 示例输入输出 1.2 示例sql语句 # Write your MySQL query statement below WITH T as (SELECT t.product_id,t.d,count(order_id) numFROM(SELECT order_id,product_id,…...

Flask RESTful 示例

目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题&#xff1a; 下面创建一个简单的Flask RESTful API示例。首先&#xff0c;我们需要创建环境&#xff0c;安装必要的依赖&#xff0c;然后…...

rknn优化教程(二)

文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK&#xff0c;开始写第二篇的内容了。这篇博客主要能写一下&#xff1a; 如何给一些三方库按照xmake方式进行封装&#xff0c;供调用如何按…...

定时器任务——若依源码分析

分析util包下面的工具类schedule utils&#xff1a; ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类&#xff0c;封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz&#xff0c;先构建任务的 JobD…...

工程地质软件市场:发展现状、趋势与策略建议

一、引言 在工程建设领域&#xff0c;准确把握地质条件是确保项目顺利推进和安全运营的关键。工程地质软件作为处理、分析、模拟和展示工程地质数据的重要工具&#xff0c;正发挥着日益重要的作用。它凭借强大的数据处理能力、三维建模功能、空间分析工具和可视化展示手段&…...

MVC 数据库

MVC 数据库 引言 在软件开发领域,Model-View-Controller(MVC)是一种流行的软件架构模式,它将应用程序分为三个核心组件:模型(Model)、视图(View)和控制器(Controller)。这种模式有助于提高代码的可维护性和可扩展性。本文将深入探讨MVC架构与数据库之间的关系,以…...

2025 后端自学UNIAPP【项目实战:旅游项目】6、我的收藏页面

代码框架视图 1、先添加一个获取收藏景点的列表请求 【在文件my_api.js文件中添加】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口&#xff08;适配服务端返回 Token&#xff09; export const login async (code, avatar) > {const res await http…...

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域&#xff0c;向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能&#xff0c;能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作&#xff0c;并通过具体…...

Python ROS2【机器人中间件框架】 简介

销量过万TEEIS德国护膝夏天用薄款 优惠券冠生园 百花蜂蜜428g 挤压瓶纯蜂蜜巨奇严选 鞋子除臭剂360ml 多芬身体磨砂膏280g健70%-75%酒精消毒棉片湿巾1418cm 80片/袋3袋大包清洁食品用消毒 优惠券AIMORNY52朵红玫瑰永生香皂花同城配送非鲜花七夕情人节生日礼物送女友 热卖妙洁棉…...

LOOI机器人的技术实现解析:从手势识别到边缘检测

LOOI机器人作为一款创新的AI硬件产品&#xff0c;通过将智能手机转变为具有情感交互能力的桌面机器人&#xff0c;展示了前沿AI技术与传统硬件设计的完美结合。作为AI与玩具领域的专家&#xff0c;我将全面解析LOOI的技术实现架构&#xff0c;特别是其手势识别、物体识别和环境…...

规则与人性的天平——由高考迟到事件引发的思考

当那位身着校服的考生在考场关闭1分钟后狂奔而至&#xff0c;他涨红的脸上写满绝望。铁门内秒针划过的弧度&#xff0c;成为改变人生的残酷抛物线。家长声嘶力竭的哀求与考务人员机械的"这是规定"&#xff0c;构成当代中国教育最尖锐的隐喻。 一、刚性规则的必要性 …...