当前位置: 首页 > news >正文

充分统计量和因子分解定理

充分统计量

  • 定义: 设样本 X X X的服从分布 f ( X ∣ θ ) f(X|\theta) f(Xθ) θ ∈ Θ \theta\in\Theta θΘ,设 T = T ( X ) T=T(X) T=T(X)为一统计量,若在已知 T T T的条件下,样本 X X X的条件分布与参数 θ \theta θ无关,则称 T = T ( X ) T=T(X) T=T(X) θ \theta θ的充分统计量

  • Example:
    X = ( x 1 , x 2 , . . , x n ) X=(x_1,x_2,..,x_n) X=(x1,x2,..,xn)是从泊松分布 P ( λ ) P(\lambda) P(λ)中抽取的随机样本,下面将从定义出发证明 T ( X ) = ∑ i = 1 n x i T(X)=\sum_{i=1}^nx_i T(X)=i=1nxi θ \theta θ的充分统计量

    ∵ x i ∼ P ( λ ) , ∴ ∑ i = 1 n x i ∼ P ( n λ ) \because x_i \sim P(\lambda),\therefore\sum_{i=1}^nx_i \sim P(n\lambda) xiP(λ)i=1nxiP(),我们将其记为 T ∼ P ( θ ) , θ = n λ T\sim P(\theta),\theta=n\lambda TP(θ),θ=
    由已知可得,样本的条件分布为 f ( X ∣ λ ) = ∏ i = 1 n e − λ λ x i x i ! = e − n λ λ ∑ i = 1 n x i ∏ i = 1 n x i ! = e − θ λ T ∏ i = 1 n x i ! f(X|\lambda)=\prod_{i=1}^n\frac{e^{-\lambda}\lambda^{x_i}}{x_i!}=\frac{e^{-n\lambda}\lambda^{\sum_{i=1}^nx_i}}{\prod_{i=1}^nx_i!}=\frac{e^{-\theta}\lambda^{T}}{\prod_{i=1}^nx_i!} f(Xλ)=i=1nxi!eλλxi=i=1nxi!eλi=1nxi=i=1nxi!eθλT
    此时样本 X X X的条件分布 f ( X ∣ λ ) f(X|\lambda) f(Xλ)与参数 λ \lambda λ无关,因此 T ( X ) = ∑ i = 1 n x i T(X)=\sum_{i=1}^nx_i T(X)=i=1nxi θ \theta θ的充分统计量

因子分解定理

  • 从定义出发证明充分统计量显得有些繁琐,因此我们引入因子分解定理

  • 定义: 设样本 X = ( x 1 , x 2 , . . , x n ) X=(x_1,x_2,..,x_n) X=(x1,x2,..,xn)的条件分布为 f ( X ∣ θ ) f(X|\theta) f(Xθ) θ ∈ Θ \theta\in\Theta θΘ T = T ( X ) T=T(X) T=T(X)为一统计量,则 T = T ( X ) T=T(X) T=T(X)是充分统计量的充分必要条件为条件分布为 f ( X ∣ θ ) f(X|\theta) f(Xθ)可被分解为如下形式: f ( X ∣ θ ) = g ( T ( X ) , θ ) ⋅ h ( X ) f(X|\theta)=g(T(X),\theta)·h(X) f(Xθ)=g(T(X),θ)h(X)也就是可被分解为两部分,一部分仅与 T ( X ) T(X) T(X) θ \theta θ有关,另一部分为一个常数或仅与样本 X X X有关

  • 重要推论: T = T ( X ) T=T(X) T=T(X)是充分统计量, S = g ( T ) S=g(T) S=g(T) T T T一一对应的变换,则 S S S也是 θ \theta θ的充分统计量

  • Example:
    证明以下命题:设 X = ( x 1 , x 2 , . . , x n ) X=(x_1,x_2,..,x_n) X=(x1,x2,..,xn)为从正态总体 N ( a , σ 2 ) N(a,\sigma^2) N(a,σ2)中抽取的随机样本,令 θ = ( a , σ 2 ) \theta=(a,\sigma^2) θ=(a,σ2),则 T ( X ) = ( ∑ x i , ∑ x i 2 ) T(X)=(\sum{x_i},\sum{x_{i}^2}) T(X)=(xixi2)为充分统计量,且 ( X ‾ , S 2 ) (\overline{X},S^2) (X,S2)也是充分统计量,此处 X ‾ = 1 n ∑ x i , S 2 = 1 n − 1 ∑ ( x i − X ‾ ) 2 \overline{X}=\frac{1}{n}\sum{x_i},S^2=\frac{1}{n-1}\sum{(x_i-\overline{X})^2} X=n1xi,S2=n11(xiX)2

    由已知得,样本的条件分布为
    f ( x ) = ( 1 2 π σ ) n exp ⁡ ( − 1 2 σ 2 ∑ ( x i − a ) 2 ) = ( 1 2 π σ ) n exp ⁡ ( − 1 2 σ 2 ( ∑ x i 2 − 2 a ∑ x i + n a 2 ) ) = g ( T ( X ) , θ ) ⋅ h ( X ) \begin{aligned} f(x) &= (\frac{1}{\sqrt{2\pi}\sigma})^n\exp(-\frac{1}{2\sigma^2}\sum{(x_i-a)^2}) \\ &=(\frac{1}{\sqrt{2\pi}\sigma})^n\exp(-\frac{1}{2\sigma^2}(\sum{x_i^2}-2a\sum{x_i}+na^2)) \\ &= g(T(X),\theta)·h(X) \end{aligned} f(x)=(2π σ1)nexp(2σ21(xia)2)=(2π σ1)nexp(2σ21(xi22axi+na2))=g(T(X),θ)h(X)
    此处的 h ( X ) ≡ 1 h(X)\equiv1 h(X)1,至此, T ( X ) = ( ∑ x i , ∑ x i 2 ) T(X)=(\sum{x_i},\sum{x_{i}^2}) T(X)=(xixi2)为充分统计量得证,又因为 ( X ‾ , S 2 ) (\overline{X},S^2) (X,S2) T ( X ) = ( ∑ x i , ∑ x i 2 ) T(X)=(\sum{x_i},\sum{x_{i}^2}) T(X)=(xixi2)一一对应的变换,由推论可得, ( X ‾ , S 2 ) (\overline{X},S^2) (X,S2)也是充分统计量

理解:

  • 充分统计量对于简化计算是有显著的帮助的
  • 一一对应的变换可理解为一个函数
  • 样本的条件分布其实就是样本似然
  • 无论是从定义出发证明充分统计量,还是通过因子分解定理,都需要先求出样本的条件分布,然后再选择一种方法
  • 从定义出发证明需要想方设法消除式子中原来的参数

相关文章:

充分统计量和因子分解定理

充分统计量 定义: 设样本 X X X的服从分布 f ( X ∣ θ ) f(X|\theta) f(X∣θ), θ ∈ Θ \theta\in\Theta θ∈Θ,设 T T ( X ) TT(X) TT(X)为一统计量,若在已知 T T T的条件下,样本 X X X的条件分布与参数 θ \the…...

M1 PD安装arm ubuntu及Docker

M1 PD安装arm ubuntu 下载 Ubuntu 22.04.2 LTS https://cn.ubuntu.com/download/server/arm 参考视频安装 https://www.bilibili.com/video/BV1Mu4y1f74v/?spm_id_from333.999.0.0&vd_source9056c6d3c91a117baaceb663957daa08 PD Ubuntu安装docker 删除现有的docker安装…...

TCP协议的RST标志

下文中的内容多数来自【参考】中的文章,这边进行一个整理和总结,后续会慢慢增加出现各个 RST 包的测试代码,便于理解。 TCP的 “断开连接” 标志 RST 标志 Reset,复位标志,用于非正常地关闭连接。它是 TCP 协议首部里…...

【软件质量与软件测试 白盒测试与黑盒测试】

第十章 黑盒测试 10.1 等价类划分: 10.1.1 划分等价类 等价类是指所有数据中的一组,它们具有相同的测试结果或相同的响应。等价类划分是将输入数据分为多个等价类的过程。 10.1.2 划分等价类的方法 划分等价类方法主要包括以下几种: 特…...

JavaScript教程(高级)

面向对象编程介绍 两大编程思想 (1)、 面向过程编程: (缩写 POP)( Process-oriented programming)面向过程就是分析出解决问题所需要的步骤,然后用函数把这些步骤一步一步实现&am…...

C++进阶 —— 范围for(C++11新特性)

目录 一,范围for介绍 二,范围for注意事项 一,范围for介绍 范围for(range-based for loop)是C11新引入的特性,可遍历各种序列结构的容器(如数组、vector、list等);每次循…...

ELK +Filebeat日志分析系统

一、 ELK日志分析系统概述 1、ELK简介 ELK是三个开源软件的缩写,分别表示:Elasticsearch , Logstash, Kibana , 它们都是开源软件。新增了一个FileBeat,它是一个轻量级的日志收集处理工具(Agent),Filebeat占用资源少&#xff0c…...

万字解析PELT算法!

Linux是一个通用操作系统的内核,她的目标是星辰大海,上到网络服务器,下至嵌入式设备都能运行良好。做一款好的linux进程调度器是一项非常具有挑战性的任务,因为设计约束太多了: 它必须是公平的快速响应系统的throughp…...

腾讯云服务器端口怎么全开?教程来了

腾讯云服务器端口怎么全开?云服务器CVM在安全组中设置开通,轻量应用服务器在防火墙中设置,腾讯云百科来详细说下腾讯云服务器端口全开放教程: 目录 腾讯云服务器端口全部开通教程 云服务器CVM端口全开放教程 轻量应用服务器开…...

深入理解Java虚拟机:JVM高级特性与最佳实践-总结-13

深入理解Java虚拟机:JVM高级特性与最佳实践-总结-13 Java内存模型与线程Java内存模型原子性、可见性与有序性先行发生原则 Java内存模型与线程 Java内存模型 原子性、可见性与有序性 Java内存模型是围绕着在并发过程中如何处理原子性、可见性和有序性这三个特征来…...

租售keysight E8257D 50G模拟信号发生器 销售/回收

是德(Keysight) E8257D 模拟信号发生器 Keysight E8257D (Agilent) PSG 模拟信号发生器提供业界领先的输出功率、电平精度和高达 67 GHz 的相位噪声性能(工作频率可达 70 GHz)。Agilent PSG 模拟信号发生器的高输出功率和卓越的电…...

【C++】什么是函数模板/类模板?

文章目录 一、函数模板1.什么是函数模板?2.函数模板格式3.函数模板原理4.函数模板实例化(1)隐式实例化(2)显示实例化 二.类模板1.类模板定义格式2.类模板的实例化 总结 一、函数模板 1.什么是函数模板? 函…...

为什么是ChatGPT引发了AI浪潮?

目录 BERT和GPT简介 BERT和GPT核心差异 GPT的优势 GPT的劣势 总结 随着近期ChatGPT的火热,引发各行各业都开始讨论AI,以及AI可以如何应用到各个细分场景。为了不被时代“抛弃”,我也投入了相当的精力用于研究和探索。但在试验的过程中&…...

批处理文件(.bat)启动redis及任何软件(同理)

批处理文件 每次从文件根目录用配置文件格式来启动redis太麻烦了 可以在桌面上使用批处理文件(.bat)启动Redis,请按照以下步骤进行操作: 打开文本编辑器,如记事本。 在编辑器中输入以下内容: 将文件保存…...

深度学习求解稀疏最优控制问题的并行化算法

稀疏最优控制问题 问题改编自论文An FE-Inexact Heterogeneous ADMM for Elliptic Optimal Control Problems with L1-Control Cost { min ⁡ y ( μ ) , u ( μ )...

牛客网项目—开发社区首页

视频连接:开发社区首页_哔哩哔哩_bilibili 代码地址:Community: msf begin 仿牛客论坛项目 (gitee.com) 本文是对仿牛客论坛项目的学习,学习本文之前需要了解Java开发的常用框架,例如SpringBoot、Mybatis等等。如果你也在学习牛…...

uniapp水文【uniapp】

文章目录 1、前言2、历史3、发展4、功能5、优缺点6、总结7、附录7.1、高频使用7.2、使用注意 1、前言 Uniapp是一种跨平台的移动应用开发框架,它允许开发者使用一套代码库,同时生成iOS、Android等多个平台的应用程序。这种技术方案可以大大降低开发成本…...

Java函数式接口

3 函数式接口 3.1 函数式接口概述 函数式接口:有且仅有一个抽象方法的接口 Java中的函数式编程体现就是Lambda表达式,所以函数式接口就是可以适用于Lambda使用的接口只有确保接口中有且仅有一个抽象方法, Java中的Lambda才能顺利地进行推导…...

安装libevent库

安装libevent库 yum install libevent libevent-devel 自动安装Memcached yum install memcached 源码安装 下载1.6.19版本 wget https://www.memcached.org/files/memcached-1.6.19.tar.gz (若证书过期yum install -y ca-certificates) 解压源码 tar -zxvf…...

vue 截取字符串的方法

vue中的字符串方法,我目前使用最多的是下面两种方法,因为 vue的字符串方法支持断言操作。 1、 vue中截取字符串的方法如下: 2、 vue中截取字符串的方法,这个方法也是需要依赖于 vue库提供的支持。 3、 vue中截取字符串的方法&…...

Cursor实现用excel数据填充word模版的方法

cursor主页:https://www.cursor.com/ 任务目标:把excel格式的数据里的单元格,按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例,…...

iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘

美国西海岸的夏天,再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至,这不仅是开发者的盛宴,更是全球数亿苹果用户翘首以盼的科技春晚。今年,苹果依旧为我们带来了全家桶式的系统更新,包括 iOS 26、iPadOS 26…...

相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解

【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了: 这一篇我们开始讲: 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下: 一、场景操作步骤 操作步…...

vue3 定时器-定义全局方法 vue+ts

1.创建ts文件 路径&#xff1a;src/utils/timer.ts 完整代码&#xff1a; import { onUnmounted } from vuetype TimerCallback (...args: any[]) > voidexport function useGlobalTimer() {const timers: Map<number, NodeJS.Timeout> new Map()// 创建定时器con…...

【git】把本地更改提交远程新分支feature_g

创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...

三体问题详解

从物理学角度&#xff0c;三体问题之所以不稳定&#xff0c;是因为三个天体在万有引力作用下相互作用&#xff0c;形成一个非线性耦合系统。我们可以从牛顿经典力学出发&#xff0c;列出具体的运动方程&#xff0c;并说明为何这个系统本质上是混沌的&#xff0c;无法得到一般解…...

用神经网络读懂你的“心情”:揭秘情绪识别系统背后的AI魔法

用神经网络读懂你的“心情”:揭秘情绪识别系统背后的AI魔法 大家好,我是Echo_Wish。最近刷短视频、看直播,有没有发现,越来越多的应用都开始“懂你”了——它们能感知你的情绪,推荐更合适的内容,甚至帮客服识别用户情绪,提升服务体验。这背后,神经网络在悄悄发力,撑起…...

ABB馈线保护 REJ601 BD446NN1XG

配电网基本量程数字继电器 REJ601是一种专用馈线保护继电器&#xff0c;用于保护一次和二次配电网络中的公用事业和工业电力系统。该继电器在一个单元中提供了保护和监控功能的优化组合&#xff0c;具有同类产品中最佳的性能和可用性。 REJ601是一种专用馈线保护继电器&#xf…...

AI书签管理工具开发全记录(十八):书签导入导出

文章目录 AI书签管理工具开发全记录&#xff08;十八&#xff09;&#xff1a;书签导入导出1.前言 &#x1f4dd;2.书签结构分析 &#x1f4d6;3.书签示例 &#x1f4d1;4.书签文件结构定义描述 &#x1f523;4.1. ​整体文档结构​​4.2. ​核心元素类型​​4.3. ​层级关系4.…...

DOM(文档对象模型)深度解析

DOM(文档对象模型)深度解析 DOM 是 HTML/XML 文档的树形结构表示,提供了一套让 JavaScript 动态操作网页内容、结构和样式的接口。 一、DOM 核心概念 1. 节点(Node)类型 类型值说明示例ELEMENT_NODE1元素节点<div>, <p>TEXT_NODE3文本节点元素内的文字COMMEN…...