当前位置: 首页 > news >正文

充分统计量和因子分解定理

充分统计量

  • 定义: 设样本 X X X的服从分布 f ( X ∣ θ ) f(X|\theta) f(Xθ) θ ∈ Θ \theta\in\Theta θΘ,设 T = T ( X ) T=T(X) T=T(X)为一统计量,若在已知 T T T的条件下,样本 X X X的条件分布与参数 θ \theta θ无关,则称 T = T ( X ) T=T(X) T=T(X) θ \theta θ的充分统计量

  • Example:
    X = ( x 1 , x 2 , . . , x n ) X=(x_1,x_2,..,x_n) X=(x1,x2,..,xn)是从泊松分布 P ( λ ) P(\lambda) P(λ)中抽取的随机样本,下面将从定义出发证明 T ( X ) = ∑ i = 1 n x i T(X)=\sum_{i=1}^nx_i T(X)=i=1nxi θ \theta θ的充分统计量

    ∵ x i ∼ P ( λ ) , ∴ ∑ i = 1 n x i ∼ P ( n λ ) \because x_i \sim P(\lambda),\therefore\sum_{i=1}^nx_i \sim P(n\lambda) xiP(λ)i=1nxiP(),我们将其记为 T ∼ P ( θ ) , θ = n λ T\sim P(\theta),\theta=n\lambda TP(θ),θ=
    由已知可得,样本的条件分布为 f ( X ∣ λ ) = ∏ i = 1 n e − λ λ x i x i ! = e − n λ λ ∑ i = 1 n x i ∏ i = 1 n x i ! = e − θ λ T ∏ i = 1 n x i ! f(X|\lambda)=\prod_{i=1}^n\frac{e^{-\lambda}\lambda^{x_i}}{x_i!}=\frac{e^{-n\lambda}\lambda^{\sum_{i=1}^nx_i}}{\prod_{i=1}^nx_i!}=\frac{e^{-\theta}\lambda^{T}}{\prod_{i=1}^nx_i!} f(Xλ)=i=1nxi!eλλxi=i=1nxi!eλi=1nxi=i=1nxi!eθλT
    此时样本 X X X的条件分布 f ( X ∣ λ ) f(X|\lambda) f(Xλ)与参数 λ \lambda λ无关,因此 T ( X ) = ∑ i = 1 n x i T(X)=\sum_{i=1}^nx_i T(X)=i=1nxi θ \theta θ的充分统计量

因子分解定理

  • 从定义出发证明充分统计量显得有些繁琐,因此我们引入因子分解定理

  • 定义: 设样本 X = ( x 1 , x 2 , . . , x n ) X=(x_1,x_2,..,x_n) X=(x1,x2,..,xn)的条件分布为 f ( X ∣ θ ) f(X|\theta) f(Xθ) θ ∈ Θ \theta\in\Theta θΘ T = T ( X ) T=T(X) T=T(X)为一统计量,则 T = T ( X ) T=T(X) T=T(X)是充分统计量的充分必要条件为条件分布为 f ( X ∣ θ ) f(X|\theta) f(Xθ)可被分解为如下形式: f ( X ∣ θ ) = g ( T ( X ) , θ ) ⋅ h ( X ) f(X|\theta)=g(T(X),\theta)·h(X) f(Xθ)=g(T(X),θ)h(X)也就是可被分解为两部分,一部分仅与 T ( X ) T(X) T(X) θ \theta θ有关,另一部分为一个常数或仅与样本 X X X有关

  • 重要推论: T = T ( X ) T=T(X) T=T(X)是充分统计量, S = g ( T ) S=g(T) S=g(T) T T T一一对应的变换,则 S S S也是 θ \theta θ的充分统计量

  • Example:
    证明以下命题:设 X = ( x 1 , x 2 , . . , x n ) X=(x_1,x_2,..,x_n) X=(x1,x2,..,xn)为从正态总体 N ( a , σ 2 ) N(a,\sigma^2) N(a,σ2)中抽取的随机样本,令 θ = ( a , σ 2 ) \theta=(a,\sigma^2) θ=(a,σ2),则 T ( X ) = ( ∑ x i , ∑ x i 2 ) T(X)=(\sum{x_i},\sum{x_{i}^2}) T(X)=(xixi2)为充分统计量,且 ( X ‾ , S 2 ) (\overline{X},S^2) (X,S2)也是充分统计量,此处 X ‾ = 1 n ∑ x i , S 2 = 1 n − 1 ∑ ( x i − X ‾ ) 2 \overline{X}=\frac{1}{n}\sum{x_i},S^2=\frac{1}{n-1}\sum{(x_i-\overline{X})^2} X=n1xi,S2=n11(xiX)2

    由已知得,样本的条件分布为
    f ( x ) = ( 1 2 π σ ) n exp ⁡ ( − 1 2 σ 2 ∑ ( x i − a ) 2 ) = ( 1 2 π σ ) n exp ⁡ ( − 1 2 σ 2 ( ∑ x i 2 − 2 a ∑ x i + n a 2 ) ) = g ( T ( X ) , θ ) ⋅ h ( X ) \begin{aligned} f(x) &= (\frac{1}{\sqrt{2\pi}\sigma})^n\exp(-\frac{1}{2\sigma^2}\sum{(x_i-a)^2}) \\ &=(\frac{1}{\sqrt{2\pi}\sigma})^n\exp(-\frac{1}{2\sigma^2}(\sum{x_i^2}-2a\sum{x_i}+na^2)) \\ &= g(T(X),\theta)·h(X) \end{aligned} f(x)=(2π σ1)nexp(2σ21(xia)2)=(2π σ1)nexp(2σ21(xi22axi+na2))=g(T(X),θ)h(X)
    此处的 h ( X ) ≡ 1 h(X)\equiv1 h(X)1,至此, T ( X ) = ( ∑ x i , ∑ x i 2 ) T(X)=(\sum{x_i},\sum{x_{i}^2}) T(X)=(xixi2)为充分统计量得证,又因为 ( X ‾ , S 2 ) (\overline{X},S^2) (X,S2) T ( X ) = ( ∑ x i , ∑ x i 2 ) T(X)=(\sum{x_i},\sum{x_{i}^2}) T(X)=(xixi2)一一对应的变换,由推论可得, ( X ‾ , S 2 ) (\overline{X},S^2) (X,S2)也是充分统计量

理解:

  • 充分统计量对于简化计算是有显著的帮助的
  • 一一对应的变换可理解为一个函数
  • 样本的条件分布其实就是样本似然
  • 无论是从定义出发证明充分统计量,还是通过因子分解定理,都需要先求出样本的条件分布,然后再选择一种方法
  • 从定义出发证明需要想方设法消除式子中原来的参数

相关文章:

充分统计量和因子分解定理

充分统计量 定义: 设样本 X X X的服从分布 f ( X ∣ θ ) f(X|\theta) f(X∣θ), θ ∈ Θ \theta\in\Theta θ∈Θ,设 T T ( X ) TT(X) TT(X)为一统计量,若在已知 T T T的条件下,样本 X X X的条件分布与参数 θ \the…...

M1 PD安装arm ubuntu及Docker

M1 PD安装arm ubuntu 下载 Ubuntu 22.04.2 LTS https://cn.ubuntu.com/download/server/arm 参考视频安装 https://www.bilibili.com/video/BV1Mu4y1f74v/?spm_id_from333.999.0.0&vd_source9056c6d3c91a117baaceb663957daa08 PD Ubuntu安装docker 删除现有的docker安装…...

TCP协议的RST标志

下文中的内容多数来自【参考】中的文章,这边进行一个整理和总结,后续会慢慢增加出现各个 RST 包的测试代码,便于理解。 TCP的 “断开连接” 标志 RST 标志 Reset,复位标志,用于非正常地关闭连接。它是 TCP 协议首部里…...

【软件质量与软件测试 白盒测试与黑盒测试】

第十章 黑盒测试 10.1 等价类划分: 10.1.1 划分等价类 等价类是指所有数据中的一组,它们具有相同的测试结果或相同的响应。等价类划分是将输入数据分为多个等价类的过程。 10.1.2 划分等价类的方法 划分等价类方法主要包括以下几种: 特…...

JavaScript教程(高级)

面向对象编程介绍 两大编程思想 (1)、 面向过程编程: (缩写 POP)( Process-oriented programming)面向过程就是分析出解决问题所需要的步骤,然后用函数把这些步骤一步一步实现&am…...

C++进阶 —— 范围for(C++11新特性)

目录 一,范围for介绍 二,范围for注意事项 一,范围for介绍 范围for(range-based for loop)是C11新引入的特性,可遍历各种序列结构的容器(如数组、vector、list等);每次循…...

ELK +Filebeat日志分析系统

一、 ELK日志分析系统概述 1、ELK简介 ELK是三个开源软件的缩写,分别表示:Elasticsearch , Logstash, Kibana , 它们都是开源软件。新增了一个FileBeat,它是一个轻量级的日志收集处理工具(Agent),Filebeat占用资源少&#xff0c…...

万字解析PELT算法!

Linux是一个通用操作系统的内核,她的目标是星辰大海,上到网络服务器,下至嵌入式设备都能运行良好。做一款好的linux进程调度器是一项非常具有挑战性的任务,因为设计约束太多了: 它必须是公平的快速响应系统的throughp…...

腾讯云服务器端口怎么全开?教程来了

腾讯云服务器端口怎么全开?云服务器CVM在安全组中设置开通,轻量应用服务器在防火墙中设置,腾讯云百科来详细说下腾讯云服务器端口全开放教程: 目录 腾讯云服务器端口全部开通教程 云服务器CVM端口全开放教程 轻量应用服务器开…...

深入理解Java虚拟机:JVM高级特性与最佳实践-总结-13

深入理解Java虚拟机:JVM高级特性与最佳实践-总结-13 Java内存模型与线程Java内存模型原子性、可见性与有序性先行发生原则 Java内存模型与线程 Java内存模型 原子性、可见性与有序性 Java内存模型是围绕着在并发过程中如何处理原子性、可见性和有序性这三个特征来…...

租售keysight E8257D 50G模拟信号发生器 销售/回收

是德(Keysight) E8257D 模拟信号发生器 Keysight E8257D (Agilent) PSG 模拟信号发生器提供业界领先的输出功率、电平精度和高达 67 GHz 的相位噪声性能(工作频率可达 70 GHz)。Agilent PSG 模拟信号发生器的高输出功率和卓越的电…...

【C++】什么是函数模板/类模板?

文章目录 一、函数模板1.什么是函数模板?2.函数模板格式3.函数模板原理4.函数模板实例化(1)隐式实例化(2)显示实例化 二.类模板1.类模板定义格式2.类模板的实例化 总结 一、函数模板 1.什么是函数模板? 函…...

为什么是ChatGPT引发了AI浪潮?

目录 BERT和GPT简介 BERT和GPT核心差异 GPT的优势 GPT的劣势 总结 随着近期ChatGPT的火热,引发各行各业都开始讨论AI,以及AI可以如何应用到各个细分场景。为了不被时代“抛弃”,我也投入了相当的精力用于研究和探索。但在试验的过程中&…...

批处理文件(.bat)启动redis及任何软件(同理)

批处理文件 每次从文件根目录用配置文件格式来启动redis太麻烦了 可以在桌面上使用批处理文件(.bat)启动Redis,请按照以下步骤进行操作: 打开文本编辑器,如记事本。 在编辑器中输入以下内容: 将文件保存…...

深度学习求解稀疏最优控制问题的并行化算法

稀疏最优控制问题 问题改编自论文An FE-Inexact Heterogeneous ADMM for Elliptic Optimal Control Problems with L1-Control Cost { min ⁡ y ( μ ) , u ( μ )...

牛客网项目—开发社区首页

视频连接:开发社区首页_哔哩哔哩_bilibili 代码地址:Community: msf begin 仿牛客论坛项目 (gitee.com) 本文是对仿牛客论坛项目的学习,学习本文之前需要了解Java开发的常用框架,例如SpringBoot、Mybatis等等。如果你也在学习牛…...

uniapp水文【uniapp】

文章目录 1、前言2、历史3、发展4、功能5、优缺点6、总结7、附录7.1、高频使用7.2、使用注意 1、前言 Uniapp是一种跨平台的移动应用开发框架,它允许开发者使用一套代码库,同时生成iOS、Android等多个平台的应用程序。这种技术方案可以大大降低开发成本…...

Java函数式接口

3 函数式接口 3.1 函数式接口概述 函数式接口:有且仅有一个抽象方法的接口 Java中的函数式编程体现就是Lambda表达式,所以函数式接口就是可以适用于Lambda使用的接口只有确保接口中有且仅有一个抽象方法, Java中的Lambda才能顺利地进行推导…...

安装libevent库

安装libevent库 yum install libevent libevent-devel 自动安装Memcached yum install memcached 源码安装 下载1.6.19版本 wget https://www.memcached.org/files/memcached-1.6.19.tar.gz (若证书过期yum install -y ca-certificates) 解压源码 tar -zxvf…...

vue 截取字符串的方法

vue中的字符串方法,我目前使用最多的是下面两种方法,因为 vue的字符串方法支持断言操作。 1、 vue中截取字符串的方法如下: 2、 vue中截取字符串的方法,这个方法也是需要依赖于 vue库提供的支持。 3、 vue中截取字符串的方法&…...

可数集和不可数集

有限集和无限集 后继集 设 S S S是任一集合,称 S S ∪ { S } S^ S\cup \left\{ S\right\} SS∪{S}为 S S S的后继集 自然数集 自然数集 N \mathbb{N} N的归纳定义是: (1) ∅ ∈ N \empty \in \mathbb{N} ∅∈N &#xff08…...

<Linux>《Linux 之 ps 命令详解大全(含实用命令)》

《Linux 之 ps 命令详解大全(含实用命令)》 1 常用命令1.1 显示所有当前进程1.2 显示所有当前进程1.3 显示所有当前进程1.4 根据用户过滤进程1.5 根据 CPU 使用来升序排序1.6 根据用户过滤进程1.7 查询全10个使用cpu和内存最高的应用1.8 通过进程名和PID…...

华为OD机试真题 Java 实现【寻找关键钥匙】【2023Q1 100分】

一、题目描述 小强正在参加《密室逃生》游戏,当前关卡要求找到符合给定 密码K(升序的不重复小写字母组成)的箱子,并给出箱子编号,箱子编号为1~N。 每个箱子中都有一个字符串s,字符串由大写字母,小写字母,数字,标点符号,空格组成,需要在这些字符串中找出所有的字母…...

项目中遇到的一些问题总结(十三)

extension-configs 和 shared-configs 的区别 在 Nacos 配置管理中,extension-configs 和 shared-configs 分别是两种不同类型的配置,它们的主要区别在于它们的使用场景和作用。 extension-configs 是一种应用程序向 Nacos 注册的扩展配置。它主要用于给…...

药品存销信息管理系统数据设计与实现(包括需求分析,数据库设计,数据表、视图、存储过程等)

前言 可前往链接直接下载: https://download.csdn.net/download/c1007857613/87776664 或者阅读本博文的详细介绍,本博文也包含所有详细内容。 一、需求分析 a.“药品存销信息管理系统”只是对数据库应用技术的一个样本数据库的实例,重在对数据库一些方法的熟悉与掌握,…...

PyTorch-Loss Function and BP

目录 1. Loss Function 1.1 L1Loss 1.2 MSELoss 1.3 CrossEntropyLoss 2. 交叉熵与神经网络模型的结合 2.1 反向传播 1. Loss Function 目的: a. 计算预测值与真实值之间的差距; b. 可通过此条件,进行反向传播。 1.1 L1Loss import torch from …...

centos docker安装mysql8

1、创建挂载文件夹 mkdir -p /mydata/mysql/log mkdir -p /mydata/mysql/data mkdir -p /mydata/mysql/conf 2、拉取镜像最新版本,如果写 mysql:8.0.26可以指定版本 docker pull mysql 3、启动命令 docker run -p 3306:3306 --restartalways -v /mydata/mysql/log:…...

Java中synchronized锁的深入理解

使用范围 synchronized使用上用于同步方法或者同步代码块在锁实现上是基于对象去实现使用中用于对static修饰的便是class类锁使用中用于对非static修饰的便是当前对象锁 synchronized的优化 在jdk1.6中对synchronized做了相关的优化 锁消除 在synchronized修饰的代码块中…...

Find My资讯|iOS17将重点改进钱包、Find My、SharePlay和AirPlay等功能

彭博社的马克・古尔曼(Mark Gurman)在最新一期 Power On 时事通讯中表示,苹果即将推出的 iOS 17 系统将改进 Wallet、Find My、SharePlay 和 AirPlay 等多项功能。 古尔曼在博文中还表示苹果会增强 Find My 的位置服务,同样也没…...

什么是webSocket?

什么是webSocket WebSockets是一种协议,它允许在Web应用程序中建立持久连接。这意味着当客户端与服务器建立连接后,它们可以始终保持连接状态,直到其中一个终止连接。相比于传统的HTTP协议,WebSockets提供了更高效的方式来处理实…...