遗传算法讲解
遗传算法(Genetic Algorithm,GA)
是模拟生物在自然环境中的遗传和进化的过程而形成的自适应全局优化搜索算法。它借用了生物遗传学的观点,通过自然选择、遗传和变异等作用机制,实现各个个体适应性的提高。
基因型 (Genotype)
在自然界中,通过基因型表征繁殖,繁殖和突变,基因型是组成染色体的一组基因的集合。
在遗传算法中,每个个体都由代表基因集合的染色体构成。例如,一条染色体可以表示为二进制串,其中每个位代表一个基因:

种群 (Population)
遗传算法保持大量的个体 (individuals) —— 针对当前问题的候选解集合。由于每个个体都由染色体表示,因此这些种族的个体 (individuals) 可以看作是染色体集合:

适应度函数 (Fitness function)
在算法的每次迭代中,使用适应度函数(也称为目标函数)对个体进行评估。目标函数是用于优化的函数或试图解决的问题。
适应度得分更高的个体代表了更好的解,其更有可能被选择繁殖并且其性状会在下一代中得到表现。随着遗传算法的进行,解的质量会提高,适应度会增加,一旦找到具有令人满意的适应度值的解,终止遗传算法。
选择 (Selection)
在计算出种群中每个个体的适应度后,使用选择过程来确定种群中的哪个个体将用于繁殖并产生下一代,具有较高值的个体更有可能被选中,并将其遗传物质传递给下一代。
仍然有机会选择低适应度值的个体,但概率较低。这样,就不会完全摒弃其遗传物质。
交叉 (Crossover)
为了创建一对新个体,通常将从当前代中选择的双亲样本的部分染色体互换(交叉),以创建代表后代的两个新染色体。此操作称为交叉或重组:

突变 (Mutation)
突变操作的目的是定期随机更新种群,将新模式引入染色体,并鼓励在解空间的未知区域中进行搜索。
突变可能表现为基因的随机变化。变异是通过随机改变一个或多个染色体值来实现的。例如,翻转二进制串中的一位:

遗传算法理论
构造遗传算法的理论假设——针对当前问题的最佳解是由多个要素组成的,当更多此类要素组合在一起时,将更接近于问题的最优解。
种群中的个体包含一些最优解所需的要素,重复选择和交叉过程将个体将这些要素传达给下一代,同时可能将它们与其他最优解的基本要素结合起来。这将产生遗传压力,从而引导种群中越来越多的个体包含构成最佳解决方案的要素
图式定理 (schema theorem)
如果一组染色体用长度为 4 的二进制串表示,则图式 1*01 表示所有这些染色体,其中最左边的位置为1,最右边的两个位置为01,从左边数的第二个位置为 1 或 0,其中 * 表示通配符。
对于每个图式,具有以下两个度量:
阶 (Order):固定数字的数量
定义长度 (Defining length):最远的两个固定数字之间的距离
下表提供了四位二进制图式及其度量的几个示例:

遗传算法的组成要素
遗传算法的核心是循环——依次应用选择,交叉和突变的遗传算子,然后对个体进行重新评估——一直持续到满足停止条件为止

精英主义 (elitism)
尽管遗传算法群体的平均适应度通常随着世代的增加而增加,但在任何时候都有可能失去当代的最佳个体。这是由于选择、交叉和变异运算符在创建下一代的过程中改变了个体。在许多情况下,丢失是暂时的,因为这些个体(或更好的个体)将在下一代中重新引入种群。
但是,如果要保证最优秀的个体总是能进入下一代,则可以选用精英主义策略。这意味着,在我们使用通过选择、交叉和突变创建的后代填充种群之前,将前 n 个个体( n 是预定义参数)复制到下一代。复制后的的精英个体仍然有资格参加选择过程,因此仍可以用作新个体的亲本。
Elitism 策略有时会对算法的性能产生重大的积极影响,因为它避免了重新发现遗传过程中丢失的良好解决方案所需的潜在时间浪费。
相关文章:
遗传算法讲解
遗传算法(Genetic Algorithm,GA) 是模拟生物在自然环境中的遗传和进化的过程而形成的自适应全局优化搜索算法。它借用了生物遗传学的观点,通过自然选择、遗传和变异等作用机制,实现各个个体适应性的提高。 基因型 (G…...
PostgreSQL修炼之道之高可用性方案设计(十六)
20 高可用性方案设计(一) 在一个生产系统中,通常都需要用高可用方案来保证系统的不间断运行。本章将详细介绍如何实现PostgreSQL数据库的高可用方案。 20.1 高可用架构基础 通常数据库的高可用方案都是让多个数据库服务器协同工作࿰…...
Bybit面经
缘起 V2EX有广告内推,看描述还挺不错 贴主5 年半工作经验,有两年大厂工作经历,20 年 11 月来到新加坡分公司开始工作 后来是猎头Jeff找的我 0318 主面 主要一个面试官是后端开发金融背景 某条金融线的负责人;其余是交叉面试。面…...
GORM---创建
目录 模型定义使用Create创建记录一次性创建多条数据批量插入数据时开启事务默认值问题 模型定义 定义一个PersonInfo结构体。 type PersonInfo struct {Id uint64 gorm:"column:id;primary_key;NOT NULL" json:"id"UserName string gorm:"co…...
高级查询 — 分组汇总
关于分组汇总 1.概述 将查询结果按某一列或者多列的值分组。 group by子句 分组后聚合函数将作用于每一个组,即每一组都有一个函数值。 语法 select 字段列表 from 表名 where 筛选条件 group by 分组的字段;select 字段列表 from 表名 group by 分组的字段 hav…...
【多线程】阻塞队列
1. 认识阻塞队列和消息队列 阻塞队列也是一个队列,也是一个特殊的队列,也遵守先进先出的原则,但是带有特殊的功能。 如果阻塞队列为空,执行出队列操作,就会阻塞等待,阻塞到另一个线程往阻塞队列中添加元素(…...
python2升级python3
查看当前版本 [roottest-01 node-v18.16.0]# python -V Python 2.7.5 安装依赖 [roottest-01 node-v18.16.0]# yum install -y gcc gcc-c zlib zlib-devel readline-devel 已加载插件:fastestmirror, langpacks Loading mirror speeds from cached hostfile * base…...
Apache Hudi初探(八)(与spark的结合)--非bulk_insert模式
背景 之前讨论的都是’hoodie.datasource.write.operation’:bulk_insert’的前提下,在这种模式下,是没有json文件的已形成如下的文件: /dt1/.hoodie_partition_metadata /dt1/2ffe3579-6ddb-4c5f-bf03-5c1b5dfce0a0-0_0-41263-0_202305282…...
Java之旅(九)
Java 循环语句 Java 中的循环语句包括 for、while 和 do-while,它们都可以用于实现循环结构。 for 语句用于循环执行一段代码块,直到给定的条件表达式的布尔值为 false。 for 语句的一般格式如下: for (initialization; condition; update…...
6年测试经验之谈,为什么要做自动化测试?
一、自动化测试 自动化测试是把以人为驱动的测试行为转化为机器执行的一种过程。 个人认为,只要能服务于测试工作,能够帮助我们提升工作效率的,不管是所谓的自动化工具,还是简单的SQL 脚本、批处理脚本,还是自己编写…...
二分法的边界条件 2517. 礼盒的最大甜蜜度
2517. 礼盒的最大甜蜜度 给你一个正整数数组 price ,其中 price[i] 表示第 i 类糖果的价格,另给你一个正整数 k 。 商店组合 k 类 不同 糖果打包成礼盒出售。礼盒的 甜蜜度 是礼盒中任意两种糖果 价格 绝对差的最小值。 返回礼盒的 最大 甜蜜度。 记录一…...
java设计模式(十六)命令模式
目录 定义模式结构角色职责代码实现适用场景优缺点 定义 命令模式(Command Pattern) 又叫动作模式或事务模式。指的是将一个请求封装成一个对象,使发出请求的责任和执行请求的责任分割开,然后可以使用不同的请求把客户端参数化&a…...
[运维] iptables限制指定ip访问指定端口和只允许指定ip访问指定端口
iptables限制指定ip访问指定端口 要使用iptables限制特定IP地址访问特定端口,您可以使用以下命令: iptables -A INPUT -p tcp -s <IP地址> --dport <端口号> -j DROP请将 <IP地址> 替换为要限制的IP地址,将 <端口号&g…...
JS学习笔记(3. 流程控制)
1. 分歧 1.1 if条件 if (条件) {...} // 为真则执行,单条语句可省略大括号 if (条件) {...} else {...}// 为真则执行if,否则执行else if (条件1) {...} else if (条件2) {...} else {...} // 条件1为真则,条件2为真则,否则执…...
遥感云大数据在灾害、水体与湿地领域典型案例及GPT模型教程
详情点击链接:遥感云大数据在灾害、水体与湿地领域典型案例及GPT模型教程 一:平台及基础开发平台 GEE平台及典型应用案例; GEE开发环境及常用数据资源; ChatGPT、文心一言等GPT模型 JavaScript基础; GEE遥感云重…...
什么是文件描述符以及重定向的本质和软硬链接(Linux)
目录 1 什么是文件?什么是文件操作?认识系统接口open 什么是文件描述符认识Linux底层进程如何打开的文件映射关系重定向的本质理解软硬链接扩展问题 1 什么是文件?什么是文件操作? 文件 文件内容 文件属性(文件属性…...
LVM逻辑卷元数据丢失恢复案例 —— 筑梦之路
Lvm常见的故障主要是pv出现异常,有以下几种情况 一个是pv所在的磁盘发生了lvm的元数据损坏一个是系统无法识别到pv所在的磁盘一个是系统异常,断电等导致重启后盘符发生变化,也就是系统识别的磁盘uuid发生变化,但是wwid还是可以对应…...
Java技术规范概览
Java技术规范 目录概述需求: 设计思路实现思路分析1.Java JSR的部分2.JSR-000373.JSR-0000394.JSR-000337 参考资料和推荐阅读 Survive by day and develop by night. talk for import biz , show your perfect code,full busy,skip hardness,make a bet…...
【OpenMMLab AI实战营第二期】二十分钟入门OpenMMLab笔记
OpenMMlab 主页:openmmlab.com 开源地址:https://github.com/open-mmlab 学习视频地址:https://www.bilibili.com/video/BV1js4y1i72P/ 概述 开源成为人工智能行业发展引擎 时间轴 theano:2007 Caffe:2013 Ten…...
docker-compose单机容器集群编排
docker-compose dockerfile模板文件可以定义一个独立的应用容器,如果需要多个容器就需要服务编排。服务编排有很多技术方案 docker-compose开源的项目实现对容器集群的快速编排 docker-compose将所管理的容器分为三层,分别为工程,服务&#…...
Prompt Tuning、P-Tuning、Prefix Tuning的区别
一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...
Admin.Net中的消息通信SignalR解释
定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...
IGP(Interior Gateway Protocol,内部网关协议)
IGP(Interior Gateway Protocol,内部网关协议) 是一种用于在一个自治系统(AS)内部传递路由信息的路由协议,主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...
(二)TensorRT-LLM | 模型导出(v0.20.0rc3)
0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述,后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作,其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...
微信小程序 - 手机震动
一、界面 <button type"primary" bindtap"shortVibrate">短震动</button> <button type"primary" bindtap"longVibrate">长震动</button> 二、js逻辑代码 注:文档 https://developers.weixin.qq…...
Swagger和OpenApi的前世今生
Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章,二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑: 🔄 一、起源与初创期:Swagger的诞生(2010-2014) 核心…...
DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”
目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...
iview框架主题色的应用
1.下载 less要使用3.0.0以下的版本 npm install less2.7.3 npm install less-loader4.0.52./src/config/theme.js文件 module.exports {yellow: {theme-color: #FDCE04},blue: {theme-color: #547CE7} }在sass中使用theme配置的颜色主题,无需引入,直接可…...
打手机检测算法AI智能分析网关V4守护公共/工业/医疗等多场景安全应用
一、方案背景 在现代生产与生活场景中,如工厂高危作业区、医院手术室、公共场景等,人员违规打手机的行为潜藏着巨大风险。传统依靠人工巡查的监管方式,存在效率低、覆盖面不足、判断主观性强等问题,难以满足对人员打手机行为精…...
抽象类和接口(全)
一、抽象类 1.概念:如果⼀个类中没有包含⾜够的信息来描绘⼀个具体的对象,这样的类就是抽象类。 像是没有实际⼯作的⽅法,我们可以把它设计成⼀个抽象⽅法,包含抽象⽅法的类我们称为抽象类。 2.语法 在Java中,⼀个类如果被 abs…...
