当前位置: 首页 > news >正文

softmax 函数

https://blog.csdn.net/m0_37769093/article/details/107732606

softmax 函数如下所示:

y i = exp ⁡ ( x i ) ∑ j = 1 n exp ⁡ ( x j ) y_{i} = \frac{\exp(x_{i})}{\sum_{j=1}^{n}{\exp(x_j)}} yi=j=1nexp(xj)exp(xi)

softmax求导如下:

i = j i = j i=j 的情况:

∂ y i ∂ x i = exp ⁡ ( x i ) ∑ j = 1 n exp ⁡ ( x j ) − ( exp ⁡ ( x i ) ) 2 ( ∑ j = 1 n exp ⁡ ( x j ) ) 2 \frac{\partial y_{i}}{\partial x_{i}} = \frac{\exp(x_{i})}{\sum_{j=1}^{n}{\exp(x_j)}} - \frac{(\exp(x_{i}))^2}{(\sum_{j=1}^{n}{\exp(x_j)})^2} xiyi=j=1nexp(xj)exp(xi)(j=1nexp(xj))2(exp(xi))2
∂ y i ∂ x i = y i − ( y i ) 2 \frac{\partial y_{i}}{\partial x_{i}} = y_{i} - (y_{i})^2 xiyi=yi(yi)2

i ≠ j i \neq j i=j 的情况:

∂ y i ∂ x j = − ( exp ⁡ ( x i ) × exp ⁡ ( x j ) ) ( ∑ j = 1 n exp ⁡ ( x j ) ) 2 \frac{\partial y_{i}}{\partial x_{j}} = - \frac{(\exp(x_{i})\times\exp(x_{j}))}{(\sum_{j=1}^{n}{\exp(x_j)})^2} xjyi=(j=1nexp(xj))2(exp(xi)×exp(xj))
∂ y i ∂ x j = − y i y j \frac{\partial y_{i}}{\partial x_{j}} = - y_{i}y_{j} xjyi=yiyj

相关文章:

softmax 函数

https://blog.csdn.net/m0_37769093/article/details/107732606 softmax 函数如下所示: y i exp ⁡ ( x i ) ∑ j 1 n exp ⁡ ( x j ) y_{i} \frac{\exp(x_{i})}{\sum_{j1}^{n}{\exp(x_j)}} yi​∑j1n​exp(xj​)exp(xi​)​ softmax求导如下: i j…...

【SpringMVC】拦截器和过滤器之间的区别

过滤器 拦截器 调用机制 基于函数的回调 基于反射机制(动态代理) 依赖关系 依赖Servlet容器 不依赖Servlet容器 作用范围 对几乎所有的请求起作用 只对action请求起作用 访问范围 不能访问action上下文、栈 可以访问action上下文、栈 action生命周期 中的调用次数…...

springboot第25集:实体类定义规则

PO:持久化对象,一个PO对象对应一张表里面的一条记录。全部对应 VO:View视图对象,用来在页面中展示数据的,页面需要哪些字段属性就添加哪些,查询出来之后赋值操作比PO对象要简单。所以提高性能。 DTO&#x…...

【python】—— python的基本介绍并附安装教程

前言: 今天,我将给大家讲解关于python的基本知识,让大家对其有个基本的认识并且附上相应的安装教程以供大家参考。接下来,我们正式进入今天的文章!!! 目录 前言 (一)P…...

浏览器跨域请求

跨域是浏览器的一种同源策略,所以该概念只存在于通过浏览器访问服务里。 如果缺少了同源策略,则浏览器的正常功能可能都会受到影响。可以说Web是构建在同源策略基础之上的,浏览器只是针对同源策略的一种实现 请求的url地址,必须与浏览器上的…...

什么,你还在用 momentJs 处理相对时间

我想&#xff0c;下面这段代码&#xff0c;你是不是在开发中常常这样使用来计算距离现在过去了多长时间&#xff1a; import moment from moment // 61k (gzipped:19.k) function Relative(props) {const timeString moment(props.date).fromNow()return <>{timeString…...

三维模型 工程图

飞机 Crankshaft飞机发动机手动冲压机包装成型机械-充填机械设备10数控等离子切割机床铜线缠绕机机床-磨床08机床-磨床04(附工程图)机床-车床数字纤维缠绕机机械臂液压钳机床-车床06挤出机机械手-09机械手模型库六柴油发动机中央空调机柜空调机机床-钻床三维设计电脑服务器机箱…...

我用ChatGPT写2023高考语文作文(二):全国乙卷

2023年 全国乙卷 适用地区&#xff1a;河南、江西、甘肃、青海、内蒙古、宁夏、新疆、陕西 吹灭别人的灯&#xff0c;并不会让自己更加光明&#xff1b;阻挡别人的路&#xff0c;也不会让自己行得更远。 “一花独放不是春&#xff0c;百花齐放春满园。”如果世界上只有一种花朵…...

java版本工程项目管理系统平台源码,助力工程企业实现数字化管理

鸿鹄工程项目管理系统 Spring CloudSpring BootMybatisVueElementUI前后端分离构建工程项目管理系统 1. 项目背景 一、随着公司的快速发展&#xff0c;企业人员和经营规模不断壮大。为了提高工程管理效率、减轻劳动强度、提高信息处理速度和准确性&#xff0c;公司对内部工程管…...

代码随想录第55天

1.判断子序列&#xff1a; 动态规划五部曲分析如下&#xff1a; 确定dp数组&#xff08;dp table&#xff09;以及下标的含义 dp[i][j] 表示以下标i-1为结尾的字符串s&#xff0c;和以下标j-1为结尾的字符串t&#xff0c;相同子序列的长度为dp[i][j]。 注意这里是判断s是否…...

算法设计与分析(填空专题)

文章目录 填空题填空题 设有一稀疏图 G,则 G 采用 邻接表 存储较省空间。 算法的时间复杂性是指算法中 元运算 执行次数。 分治法的基本思想是将一个规模为 n 的问题分解为与原问题 相同 的 k 个规模较小且互相独立的子问题。 贪心算法中每次做出的贪心选择都是 当前的 最优选…...

Ubuntu22.04 K8s1.27.2

Ubuntu22.04 && K8s1.27.2 1. 服务器配置 IpServerMEM192.168.56.11k8smaster6G192.168.56.16k8snode14G192.168.56.17k8snode24G 2. 获取源 $ sudo apt-get update $ sudo apt-get install -y apt-transport-https ca-certificates curl# packages.cloud.google.c…...

卡尔曼滤波与组合导航原理(十二)扩展卡尔曼滤波:EKF、二阶EKF、迭代EKF

文章目录 一、多元向量的泰勒级数展开二、扩展Kalman滤波三、二阶滤波四、迭代EKF滤波 一、多元向量的泰勒级数展开 { y 1 f 1 ( X ) f 1 ( x 1 , x 2 , ⋯ x n ) y 2 f 2 ( X ) f 2 ( x 1 , x 2 , ⋯ x n ) ⋮ y m f m ( X ) f m ( x 1 , x 2 , ⋯ x n ) \left\{\begin{…...

基于蒙特卡洛模拟法的电动汽车充电负荷研究(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…...

自学黑客【网络安全】,一般人我劝你还是算了吧

一、自学网络安全学习的误区和陷阱 1.不要试图先成为一名程序员&#xff08;以编程为基础的学习&#xff09;再开始学习 我在之前的回答中&#xff0c;我都一再强调不要以编程为基础再开始学习网络安全&#xff0c;一般来说&#xff0c;学习编程不但学习周期长&#xff0c;而…...

编程中的心理策略:如何从错误中学习并实现自我成长

在日复一日的工作中&#xff0c;我们免不了会产生一些失误&#xff0c;会因此感到沮丧和失望。但如何正确地对待和处理这些失误才是最重要的&#xff0c;它直接影响到我们的工作表现和个人成长。 一、面对失误而带来的指责和沮丧的策略 在程序设计领域&#xff0c;我们经常面临…...

Rocket面试(五)Rocketmq发生流量控制的情况有哪些?

在使用rocketmq过程中总能看见一下异常 [TIMEOUT_CLEAN_QUEUE]broker busy, start flow control for a while, period in queue: 206ms, size of queue: 5这是因为Rocketmq出发了流量控制。 触发流量控制就是为了防止Broker压力过大挂掉。主要分为Broker流控&#xff0c;Consu…...

Tableau招聘信息数据可视化

获取的招聘信息数据为某招聘网站发布的大数据及数据分析相关岗位&#xff0c;对其他计算机相关岗位的招聘信息数据分析也有一定的参考价值。因为所获取的招聘信息数据数量只有1万左右&#xff0c;实际的招聘信息数量肯定不止1万&#xff0c;所以可能会与实际信息有一定的误差。…...

游戏服务器开发指南(八):合理应对异常

大家好&#xff01;我是长三月&#xff0c;一位在游戏行业工作多年的老程序员&#xff0c;专注于分享服务器开发相关的文章。 本文是通用程序设计主题下的第二篇。这个主题主要探讨如何编写高效、健壮、易读的游戏业务代码&#xff0c;每篇从一个小点切入。本次讨论的要点是&a…...

【g】聚类算法之K-means算法

聚类算法是一种无监督学习方法&#xff0c;它将相似的数据样本划分为一组&#xff0c;同时将不相似的数据样本划分为另一组。这个过程由计算机自动完成&#xff0c;不需要任何人为的干预。 K-means算法是一种经典的聚类算法&#xff0c;它的主要思想是把数据集分成k个簇&#…...

Java 语言特性(面试系列2)

一、SQL 基础 1. 复杂查询 &#xff08;1&#xff09;连接查询&#xff08;JOIN&#xff09; 内连接&#xff08;INNER JOIN&#xff09;&#xff1a;返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...

(二)原型模式

原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

[Java恶补day16] 238.除自身以外数组的乘积

给你一个整数数组 nums&#xff0c;返回 数组 answer &#xff0c;其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法&#xff0c;且在 O(n) 时间复杂度…...

DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”

目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...

AI,如何重构理解、匹配与决策?

AI 时代&#xff0c;我们如何理解消费&#xff1f; 作者&#xff5c;王彬 封面&#xff5c;Unplash 人们通过信息理解世界。 曾几何时&#xff0c;PC 与移动互联网重塑了人们的购物路径&#xff1a;信息变得唾手可得&#xff0c;商品决策变得高度依赖内容。 但 AI 时代的来…...

html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码

目录 一、&#x1f468;‍&#x1f393;网站题目 二、✍️网站描述 三、&#x1f4da;网站介绍 四、&#x1f310;网站效果 五、&#x1fa93; 代码实现 &#x1f9f1;HTML 六、&#x1f947; 如何让学习不再盲目 七、&#x1f381;更多干货 一、&#x1f468;‍&#x1f…...

一些实用的chrome扩展0x01

简介 浏览器扩展程序有助于自动化任务、查找隐藏的漏洞、隐藏自身痕迹。以下列出了一些必备扩展程序&#xff0c;无论是测试应用程序、搜寻漏洞还是收集情报&#xff0c;它们都能提升工作流程。 FoxyProxy 代理管理工具&#xff0c;此扩展简化了使用代理&#xff08;如 Burp…...

webpack面试题

面试题&#xff1a;webpack介绍和简单使用 一、webpack&#xff08;模块化打包工具&#xff09;1. webpack是把项目当作一个整体&#xff0c;通过给定的一个主文件&#xff0c;webpack将从这个主文件开始找到你项目当中的所有依赖文件&#xff0c;使用loaders来处理它们&#x…...

PLC入门【4】基本指令2(SET RST)

04 基本指令2 PLC编程第四课基本指令(2) 1、运用上接课所学的基本指令完成个简单的实例编程。 2、学习SET--置位指令 3、RST--复位指令 打开软件(FX-TRN-BEG-C)&#xff0c;从 文件 - 主画面&#xff0c;“B: 让我们学习基本的”- “B-3.控制优先程序”。 点击“梯形图编辑”…...