当前位置: 首页 > news >正文

python基础知识(十三):numpy库的基本用法

目录

  • 1. numpy的介绍
  • 2. numpy库产生矩阵
    • 2.1 numpy将列表转换成矩阵
    • 2.2 numpy创建矩阵
  • 3. numpy的基础运算
  • 4. numpy的基础运算2
  • 5. 索引

1. numpy的介绍

numpy库是numpy是python中基于数组对象的科学计算库。

2. numpy库产生矩阵

2.1 numpy将列表转换成矩阵

import numpy as nparray = np.array([[1, 2, 3],[4, 5, 7]])  # 将列表转换成矩阵
print(array)  # 输出矩阵
print('number of dim', array.ndim)  # 输出矩阵的维度
print('shape', array.shape)  # 输出矩阵的形状
print('size', array.size)  # 输出矩阵的大小

在这段代码中,首先导入numpy库,然后使用array()方法将列表转换成矩阵。
在这里插入图片描述

2.2 numpy创建矩阵

  • 使用array()方法产生一维和二维矩阵
import numpy as np
# 一维矩阵
a = np.array([2, 3, 4], dtype=np.int64)
print(a, a.dtype)# 二维矩阵
a = np.array([[1, 2, 3],[4, 5, 6]])
print(a)

在这里插入图片描述

  • 使用zeros()方法产生全0矩阵
# 0矩阵
a = np.zeros((3, 4))
print(a)

在这里插入图片描述

  • 使用ones()方法产生全1矩阵
# 1矩阵
a = np.ones((3, 4))
print(a)

在这里插入图片描述

  • 使用arrange()方法产生均匀矩阵、
# 均匀矩阵
a = np.arange(10, 20, 2)  # 10-20,步长为2
print(a)
a = np.arange(12).reshape((3, 4))  # 将形状改变成3*4
print(a)

在这里插入图片描述

  • 使用linspace()方法产生一维行向量
# 一维行向量
a = np.linspace(1, 10, 6)
print(a)
a = np.linspace(1, 10, 6).reshape((2, 3))
print(a)

在这里插入图片描述

  • 完整代码
import numpy as np
# 一维矩阵
a = np.array([2, 3, 4], dtype=np.int64)
print(a, a.dtype)# 二维矩阵
a = np.array([[1, 2, 3],[4, 5, 6]])
print(a)# 0矩阵
a = np.zeros((3, 4))
print(a)# 1矩阵
a = np.ones((3, 4))
print(a)# 均匀矩阵
a = np.arange(10, 20, 2)  # 10-20,步长为2
print(a)
a = np.arange(12).reshape((3, 4))  # 将形状改变成3*4
print(a)# 一维行向量
a = np.linspace(1, 10, 6)
print(a)
a = np.linspace(1, 10, 6).reshape((2, 3))
print(a)

3. numpy的基础运算

  • 加法运算
import numpy as npa = np.array([10, 20, 30, 40])
b = np.arange(4)
print(b)
# 加法
c = a + b
print(c)

在这里插入图片描述

  • 减法运算
# 减法
c = a - b
print(c)

在这里插入图片描述

  • 乘方运算
# 乘方
b = b ** 2
print(b)

在这里插入图片描述

  • 正弦运算
# 正弦
c = 10 * np.sin(a)
print(c)

在这里插入图片描述

  • 矩阵相乘,使用*是矩阵点乘,使用dot()方法是矩阵乘法
a = np.array([[10, 20],[30, 40]])
b = np.arange(4).reshape((2, 2))
print(a)
print(b)
c = a * b  # 矩阵对应相乘,点乘
c_dot = np.dot(a, b)  # 矩阵相乘
c_dot_2 = a.dot(b)
print(c)
print(c_dot)
print(c_dot_2)

在这里插入图片描述

  • 求和运算,最大值和最小值
# 随机矩阵
a = np.random.random((2, 4))
print(a)print(np.sum(a))
print(np.max(a))
print(np.min(a))
print(np.sum(a, axis=1))  # 对每一行求和
print(np.sum(a, axis=0))  # 对每一列求和

在这里插入图片描述

  • 完整代码
import numpy as npa = np.array([10, 20, 30, 40])
b = np.arange(4)
print(b)
# 加法
c = a + b
print(c)
# 减法
c = a - b
print(c)
# 乘方
b = b ** 2
print(b)
# 正弦
c = 10 * np.sin(a)
print(c)
# 矩阵相乘
a = np.array([[10, 20],[30, 40]])
b = np.arange(4).reshape((2, 2))
print(a)
print(b)
c = a * b  # 矩阵对应相乘,点乘
c_dot = np.dot(a, b)  # 矩阵相乘
c_dot_2 = a.dot(b)
print(c)
print(c_dot)
print(c_dot_2)# 随机矩阵
a = np.random.random((2, 4))
print(a)print(np.sum(a))
print(np.max(a))
print(np.min(a))
print(np.sum(a, axis=1))  # 对每一行求和
print(np.sum(a, axis=0))  # 对每一列求和

4. numpy的基础运算2

import numpy as np
A = np.arange(2, 14).reshape((3, 4))print(A)
print(np.nanargmin(A))  # 对最小值的索引
print(np.nanargmax(A))  # 对最大值的索引
print(np.mean(A))  # 平均值
print(np.median(A))  # 中位数
print(np.cumsum(A))  # 累加和
print(np.diff(A))  # 累差
print(np.nonzero(A))  # 输出非零的数的位置
print(np.sort(A))  # 逐行进行排序
print(np.transpose(A))  # 矩阵转置
print(A.T)  # 矩阵转置
print((A.T).dot(A))  # 实对称矩阵
print(np.clip(A, 5, 9))  # A中小于5的数等于5,大于9的数等于9,其余不变
print(np.nanmean(A, axis=0))  # 对列进行计算平均数
print(np.nanmean(A, axis=1))  # 对行进行计算平均数
结果:
[[ 2  3  4  5][ 6  7  8  9][10 11 12 13]]
0
11
7.5
7.5
[ 2  5  9 14 20 27 35 44 54 65 77 90]
[[1 1 1][1 1 1][1 1 1]]
(array([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2], dtype=int64), array([0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3], dtype=int64))
[[ 2  3  4  5][ 6  7  8  9][10 11 12 13]]
[[ 2  6 10][ 3  7 11][ 4  8 12][ 5  9 13]]
[[ 2  6 10][ 3  7 11][ 4  8 12][ 5  9 13]]
[[140 158 176 194][158 179 200 221][176 200 224 248][194 221 248 275]]
[[5 5 5 5][6 7 8 9][9 9 9 9]]
[6. 7. 8. 9.]
[ 3.5  7.5 11.5]

5. 索引

import numpy as np
# 一维数组
A = np.arange(3, 15)
print(A)
print(A[3])  # 对A中的值进行索引,位置是3
# 二维矩阵
A = np.arange(3, 15).reshape((3, 4))
print(A)
print(A[1])  # 对A中的值进行索引,位置是1,为第一行的数
print(A[1][1])  # 对A中第一行第一列的数进行索引
print(A[1, 1])  # 对A中第一行第一列的数进行索引
print(A[1, :])  # A中第一行的所有的数
print(A[:, 1])  # A中第一列的所有的数
print(A[1, 1:3])  # A中第一行的1-3的数,取左不取右
# 输出矩阵中每一行的数
for row in A:print(row)# 输出矩阵中每一列的数
for col in A.T:print(col)# 输出A中每一个数
print(A.flatten())  # 将矩阵转换成一维数组
for item in A.flat:print(item)
结果:
[ 3  4  5  6  7  8  9 10 11 12 13 14]
6
[[ 3  4  5  6][ 7  8  9 10][11 12 13 14]]
[ 7  8  9 10]
8
8
[ 7  8  9 10]
[ 4  8 12]
[8 9]
[3 4 5 6]
[ 7  8  9 10]
[11 12 13 14]
[ 3  7 11]
[ 4  8 12]
[ 5  9 13]
[ 6 10 14]
[ 3  4  5  6  7  8  9 10 11 12 13 14]
3
4
5
6
7
8
9
10
11
12
13
14

相关文章:

python基础知识(十三):numpy库的基本用法

目录 1. numpy的介绍2. numpy库产生矩阵2.1 numpy将列表转换成矩阵2.2 numpy创建矩阵 3. numpy的基础运算4. numpy的基础运算25. 索引 1. numpy的介绍 numpy库是numpy是python中基于数组对象的科学计算库。 2. numpy库产生矩阵 2.1 numpy将列表转换成矩阵 import numpy as …...

【SA8295P 源码分析】16 - TouchScreen Panel (TP)线程函数 tp_recv_thread() 源码分析

【【SA8295P 源码分析】16 - TouchScreen Panel (TP)线程函数 tp_recv_thread 源码分析 一、TP 线程函数:tp_recv_thread()二、处理&上报 坐标数据 cypress_read_touch_data()系列文章汇总见:《【SA8295P 源码分析】00 - 系列文章链接汇总》 本文链接:《【SA8295P 源码…...

Python3数据分析与挖掘建模(13)复合分析-因子关分析与小结

1.因子分析 1.1 探索性因子分析 探索性因子分析(Exploratory Factor Analysis,EFA)是一种统计方法,用于分析观测变量之间的潜在结构和关联性。它旨在确定多个观测变量是否可以归结为较少数量的潜在因子,从而帮助简化…...

【stable diffusion】图片批量自动打标签、标签批量修改(BLIP、wd14)用于训练SD或者LORA模型

参考: B站教学视频【:AI绘画】新手向!Lora训练!训练集准备、tag心得、批量编辑、正则化准备】官方教程:https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_README-en.md#automatic-captioning 一、…...

TCP可靠数据传输

TCP的可靠数据传输 1.TCP保证可靠数据传输的方法 TCP主要提供了检验和、序号/确认号、超时重传、最大报文段长度、流量控制等方法实现了可靠数据传输。 检验和 通过检验和的方式,接收端可以检测出来数据是否有差错和异常,假如有差错就会直接丢失该TC…...

Python 私有变量和私有方法介绍

Python 私有变量和私有方法介绍 关于 Python 私有变量和私有方法,通常情况下,开发者可以在方法或属性名称前加上单下划线(_),以表示该方法或属性仅供内部使用,但这只是一种约定,并没有强制执行禁…...

Kotlin Lambda表达式和匿名函数的组合简直太强了

Kotlin Lambda表达式和匿名函数的组合简直太强了 简介 首先,在 Kotlin 中,函数是“第一公民”(First Class Citizen)。因此,它们可以被分配为变量的值,作为其他函数的参数传递或者函数的返回值。同样&…...

uniapp 小程序 获取手机号---通过前段获取

<template><!-- 获取手机号&#xff0c;登录内容 --><view><!-- 首先需要先登录获取code码&#xff0c;然后才可以获取用户唯一标识openid以及会话密钥及用于解密获取手机的加密信息 --><view click"login">登录</view><view…...

面板安全能力持续增强,新增日志审计功能,1Panel开源面板v1.3.0发布

2023年6月12日&#xff0c;现代化、开源的Linux服务器运维管理面板1Panel正式发布v1.3.0版本。 在这一版本中&#xff0c;1Panel进一步增强了安全方面的能力&#xff0c;包括新增SSH配置管理、域名绑定和IP授权支持&#xff0c;以及启用网站防盗链功能。此外&#xff0c;该版本…...

k8s学习-CKS考试必过宝典

目录 CKS考纲集群安装&#xff1a;10%集群强化&#xff1a;15%系统强化&#xff1a;15%微服务漏洞最小化&#xff1a;20%供应链安全&#xff1a;20%监控、日志记录和运行时安全&#xff1a;20% 报名模拟考试考试注意事项考前考中考后 参考 CKS考纲 集群安装&#xff1a;10% 使…...

jmeter如何将上一个请求的结果作为下一个请求的参数

目录 1、简介 2、用途 3、下载、简单应用 4、如何将上一个请求的结果作为下一个请求的参数 1、简介 在JMeter中&#xff0c;可以通过使用变量来将上一个请求的结果作为下一个请求的参数传递。 ApacheJMeter是Apache组织开发的基于Java的压力测试工具。用于对软件做压力测…...

JAVA如何学习爬虫呢?

学习Java爬虫需要掌握以下几个方面&#xff1a; Java基础知识&#xff1a;包括Java语法、面向对象编程、集合框架等。 网络编程&#xff1a;了解HTTP协议、Socket编程等。 HTML、CSS、JavaScript基础&#xff1a;了解网页的基本结构和样式&#xff0c;以及JavaScript的基本语…...

距离保护原理

距离保护是反映故障点至保护安装处的距离&#xff0c;并根据距离的远近确定动作时间的一种保护。故障点距保护安装处越近&#xff0c;保护的动作时间就越短&#xff0c;反之就越长&#xff0c;从而保证动作的选择性。测量故障点至保护安装处的距离&#xff0c;实际上就是用阻抗…...

从微观世界的RST包文视角助力企业网络应用故障排查和优化

1. 前言 随着互联网的普及和发展&#xff0c;各行业的业务和应用越来越依赖于网络。然而&#xff0c;网络环境的不稳定性和复杂性使得出现各种异常现象的概率变得更高了。这些异常现象会导致业务无法正常运行&#xff0c;给用户带来困扰&#xff0c;甚至影响企业的形象和利益。…...

企业微信开发,简单测试。

企业微信开发&#xff0c;参考文档&#xff1a; https://github.com/wechat-group/WxJava/wiki...

element日期选择设置默认时间el-date-picker

<el-date-pickerv-model"rangeDate"style"width:350px"type"daterange"value-format"yyyy-MM-dd"change"dataChange"start-placeholder"开始日期"end-placeholder"结束日期"></el-date-picker…...

AB32VG:SDK_AB53XX_V061(3)IO口复用功能的补充资料

文章目录 1.IO口功能复用表格2.功能映射寄存器 FUNCTION03.功能映射寄存器 FUNCTION14.功能映射寄存器 FUNCTION2 AB5301A的官方数据手册很不完善&#xff0c;没有开放出来。我通过阅读源码补充了一些关于IO口功能复用寄存器的资料。 官方寄存器文档&#xff1a;《 AB32VG1_Re…...

UnityVR--组件10--UGUI简单介绍

目录 前言 UI基础组件 1. Canvas 2. EventSystem 3. Image 4. Text/TextMeshPro/InputField 5. Button控件 其他 前言 UGUI是Unity推出的新的UI系统&#xff0c;它与Unity引擎结合得更紧密&#xff0c;并拥有强大的屏幕自适应和更简单的深度处理机制&#xff0c;更容易使用和…...

k8s 探针

1.前言 Kubernetes探针(Probe)是用于检查容器运行状况的一种机制。探针可以检查容器是否正在运行&#xff0c;容器是否能够正常响应请求&#xff0c;以及容器内部的应用程序是否正常运行等。在Kubernetes中&#xff0c;探针可以用于确定容器的健康状态&#xff0c;如果容器的健…...

【爬虫】4.4 Scrapy 爬取网站数据

目录 1. 建立 Web 网站 2. 编写 Scrapy 爬虫程序 为了说明 scrapy 爬虫爬取网站多个网页数据的过程&#xff0c;用 Flask 搭建一个小型的 Web 网站。 1. 建立 Web 网站 &#xff08;1&#xff09;books.html <!DOCTYPE html> <html lang"en"> <h…...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度​

一、引言&#xff1a;多云环境的技术复杂性本质​​ 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时&#xff0c;​​基础设施的技术债呈现指数级积累​​。网络连接、身份认证、成本管理这三大核心挑战相互嵌套&#xff1a;跨云网络构建数据…...

ubuntu搭建nfs服务centos挂载访问

在Ubuntu上设置NFS服务器 在Ubuntu上&#xff0c;你可以使用apt包管理器来安装NFS服务器。打开终端并运行&#xff1a; sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享&#xff0c;例如/shared&#xff1a; sudo mkdir /shared sud…...

Python实现prophet 理论及参数优化

文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候&#xff0c;写过一篇简单实现&#xff0c;后期随着对该模型的深入研究&#xff0c;本次记录涉及到prophet 的公式以及参数调优&#xff0c;从公式可以更直观…...

EtherNet/IP转DeviceNet协议网关详解

一&#xff0c;设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络&#xff0c;本网关连接到EtherNet/IP总线中做为从站使用&#xff0c;连接到DeviceNet总线中做为从站使用。 在自动…...

ABAP设计模式之---“简单设计原则(Simple Design)”

“Simple Design”&#xff08;简单设计&#xff09;是软件开发中的一个重要理念&#xff0c;倡导以最简单的方式实现软件功能&#xff0c;以确保代码清晰易懂、易维护&#xff0c;并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计&#xff0c;遵循“让事情保…...

AI,如何重构理解、匹配与决策?

AI 时代&#xff0c;我们如何理解消费&#xff1f; 作者&#xff5c;王彬 封面&#xff5c;Unplash 人们通过信息理解世界。 曾几何时&#xff0c;PC 与移动互联网重塑了人们的购物路径&#xff1a;信息变得唾手可得&#xff0c;商品决策变得高度依赖内容。 但 AI 时代的来…...

CVE-2020-17519源码分析与漏洞复现(Flink 任意文件读取)

漏洞概览 漏洞名称&#xff1a;Apache Flink REST API 任意文件读取漏洞CVE编号&#xff1a;CVE-2020-17519CVSS评分&#xff1a;7.5影响版本&#xff1a;Apache Flink 1.11.0、1.11.1、1.11.2修复版本&#xff1a;≥ 1.11.3 或 ≥ 1.12.0漏洞类型&#xff1a;路径遍历&#x…...

Windows安装Miniconda

一、下载 https://www.anaconda.com/download/success 二、安装 三、配置镜像源 Anaconda/Miniconda pip 配置清华镜像源_anaconda配置清华源-CSDN博客 四、常用操作命令 Anaconda/Miniconda 基本操作命令_miniconda创建环境命令-CSDN博客...

智能职业发展系统:AI驱动的职业规划平台技术解析

智能职业发展系统&#xff1a;AI驱动的职业规划平台技术解析 引言&#xff1a;数字时代的职业革命 在当今瞬息万变的就业市场中&#xff0c;传统的职业规划方法已无法满足个人和企业的需求。据统计&#xff0c;全球每年有超过2亿人面临职业转型困境&#xff0c;而企业也因此遭…...

ui框架-文件列表展示

ui框架-文件列表展示 介绍 UI框架的文件列表展示组件&#xff0c;可以展示文件夹&#xff0c;支持列表展示和图标展示模式。组件提供了丰富的功能和可配置选项&#xff0c;适用于文件管理、文件上传等场景。 功能特性 支持列表模式和网格模式的切换展示支持文件和文件夹的层…...