当前位置: 首页 > news >正文

webrtc QOS笔记一 Neteq直方图算法浅读

webrtc QOS笔记一 Neteq直方图算法浅读

文章目录

    • webrtc QOS笔记一 Neteq直方图算法浅读
      • Histogram Algorithm
      • 获取目标延迟
      • 遗忘因子曲线

Histogram Algorithm

DelayManager::Update()->Histogram::Add() 会根据计算的iat_packet(inter arrival times, =实际包间间隔 / 打包时长),将该iat_packet插入IATVector直方图对应数组下标内。并更新该直方图的数据下标下概率参数。[M88 SRC]
在这里插入图片描述

一共有四步操作:

1、用遗忘因子,对历史数据的出现概率进行遗忘, 并统计概率合
buckets_[i]=buckets_[i]∗forget_factorbuckets\_[i] = buckets\_[i] * forget\_factorbuckets_[i]=buckets_[i]forget_factor

vector_sum=∑0buckets.size()buckets_[i]∗forget_factorvector\_sum=\sum_{0}^{buckets.size()} buckets\_[i] * forget\_factorvector_sum=0buckets.size()buckets_[i]forget_factor

2、增大本次计算到的IAT的概率值。

buckets_[value]=buckets_[value]+(1−forgetfactor_)buckets\_[value]=buckets\_[value]+(1−forget_factor\_)buckets_[value]=buckets_[value]+(1forgetfactor_)

vector_sum=vector_sum+(1−forget_factor_)vector\_sum = vector\_sum + (1-forget\_factor\_)vector_sum=vector_sum+(1forget_factor_)

  • 例:
假如历史bucket 数据为:
buckets_ = {0,0,1,0}遗忘因子为 0.9:
forget_factor = 0.9新来的抖动延迟数据为66ms, 桶间为20ms一个单位, 那插入位置为 66 / 20 = 3,则更新后buckets = {0,0,0.9,0.1}假若使用%95分位的值作为目标延迟, 则更新后的目标延迟为 60ms.

3、调整本次计算到的IAT的概率,使整个IAT的概率分布之和近似为1。调整方式为假设当前概率分布之和为tempSum,则:

vectorsum=1−vectorsumvector_sum=1−vector_sumvectorsum=1vectorsum

buckets[n]={buckets_[n]−Min(∣vector_sum∣,buckets_[n]/16)if(vectorsum>0)buckets_[n]+Min(∣vector_sum∣,buckets_[n]/16)if(vectorsum>0)buckets_[n]= \begin{cases} buckets\_[n]−Min(∣vector\_sum∣,buckets\_[n]/16) if(vector_sum>0) \\ buckets\_[n]+Min(∣vector\_sum∣,buckets\_[n]/16) if(vector_sum>0) \\ \end{cases} buckets[n]={buckets_[n]Min(vector_sum,buckets_[n]/16)if(vectorsum>0)buckets_[n]+Min(vector_sum,buckets_[n]/16)if(vectorsum>0)

4、更新forget_factor_, 使遗忘因子forget_factor_逼近base_forget_factor_

a.使用start_forget_weight_更新(默认初始值start_forget_weight_ = 2,base_forget_factor_=0.9993)

add_count_++add\_count\_++add_count_++
forget_factor_=1−(start_forget_weight_/(add_count_+1))forget\_factor\_=1−(start\_forget\_weight\_/(add\_count\_+1))forget_factor_=1(start_forget_weight_/(add_count_+1))
forget_factor_=Max(0,Min(base_forget_factor_,forget_factor))forget\_factor\_=Max(0,Min(base\_forget\_factor\_,forget\_factor))forget_factor_=Max(0,Min(base_forget_factor_,forget_factor))

b. 其中的3是Q30的值,没有多大 = 0.000091552734375
forget_factor_=forgetfactor_+(base_forget_factor_−forget_factor_+3)/4forget\_factor\_=forget_factor\_+(base\_forget\_factor\_−forget\_factor\_+3)/4forget_factor_=forgetfactor_+(base_forget_factor_forget_factor_+3)/4

获取目标延迟

依据probability获取此百分位的值作为目标延迟(初始值0.97)

∑0nbuckets_[n]>probability\sum_{0}^{n} buckets\_[n] > probability0nbuckets_[n]>probability

int Histogram::Quantile(int probability) {// Find the bucket for which the probability of observing an// inter-arrival time larger than or equal to |index| is larger than or// equal to |probability|. The sought probability is estimated using// the histogram as the reverse cumulant PDF, i.e., the sum of elements from// the end up until |index|. Now, since the sum of all elements is 1// (in Q30) by definition, and since the solution is often a low value for// |iat_index|, it is more efficient to start with |sum| = 1 and subtract// elements from the start of the histogram.int inverse_probability = (1 << 30) - probability;size_t index = 0;        // Start from the beginning of |buckets_|.int sum = 1 << 30;       // Assign to 1 in Q30.sum -= buckets_[index];while ((sum > inverse_probability) && (index < buckets_.size() - 1)) {// Subtract the probabilities one by one until the sum is no longer greater// than |inverse_probability|.++index;sum -= buckets_[index];}return static_cast<int>(index);
}

遗忘因子曲线

测试曲线,调整遗忘因子提高抖动估计灵敏度:

#include <iostream>
#include <cstdint>
#include <vector>uint32_t packet_loss_rate_ = 0;int main()
{std::vector<int> input;std::vector<float> buckets;float forget_factor = 0.9993;float val = 0;for (size_t k = 0; k < 1000; k ++) {val = val * forget_factor + (1-forget_factor);buckets.push_back(val);}for (int i = 0; i < 1000; ++i) {std::cout << buckets[i]<< " ";}return 0;
}

在这里插入图片描述

相关文章:

webrtc QOS笔记一 Neteq直方图算法浅读

webrtc QOS笔记一 Neteq直方图算法浅读 文章目录webrtc QOS笔记一 Neteq直方图算法浅读Histogram Algorithm获取目标延迟遗忘因子曲线Histogram Algorithm DelayManager::Update()->Histogram::Add() 会根据计算的iat_packet(inter arrival times, 实际包间间隔 / 打包时长…...

细分和切入点

本文重点介绍做SEO网站细分和切入点的方法&#xff1a;当我们的行业和关键词竞争性比较大的时候&#xff0c;我们可以考虑对行业或者产品做细分&#xff0c;从而找到切入点。可以按照以下三个方面进行细分。1、按城市细分例如&#xff1a;A&#xff1a;餐饮培训&#xff0c;当前…...

iOS创建Universal Link

iOS 9之前&#xff0c;一直使用的是URL Schemes技术来从外部对App进行跳转&#xff0c;但是iOS系统中进行URL Schemes跳转的时候如果没有安装App&#xff0c;会提示无法打开页面的提示。 iOS 9之后起可以使用Universal Links技术进行跳转页面&#xff0c;这是一种体验更加完美的…...

RuoYi-Vue搭建(若依)

项目简介 RuoYi-Vue基于SpringBootVue前后端分离的Java快速开发框架1.前端采用Vue、Element UI2.后端采用Spring Boot、Spring Security、Redis & Jwt3.权限认证使用Jwt&#xff0c;支持多终端认证系统4.支持加载动态权限菜单&#xff0c;多方式轻松权限控制5.高效率开发&a…...

进程组和用处

进程组&#xff1a;一个或多个进程的集合&#xff0c;进程组id是一个正整数。组长进程&#xff1a;进程组id 进程id组长进程可以创建一个进程组&#xff0c;创建该进程组的进程&#xff0c;终止了&#xff0c;只要进程组有一个进程存在&#xff0c;进程组就存在&#xff0c;与…...

Nacos集群+Nginx负载均衡

搭建Nacos集群 注意: 3个或3个以上Nacos节点才能构成集群。要求服务器内存分配最好大于6G以上&#xff08;如果不够则需修改nacos启动脚本中的默认内存配置&#xff09;根据nacos自带的mysql建库脚本建立对应数据库&#xff08;/conf/nacos-mysql.sql&#xff09;如果是三台服…...

TypeScript 学习之类型兼容

TypeScript 的类型兼容性是基于结构子类型的。 结构类型是一种只使用其成员来描述类型的方式。 interface Named {name: string; }class Person {name: string; }let p: Named; p new Person();// 赋值成功&#xff0c;因为都是结构类型&#xff0c;只要Person 类型的包含 Nam…...

Linux软件管理RPM

目录 前言 RPM软件管理程序&#xff1a;rpm RPM默认安装的路径 PRM讲解前准备工作 RPM安装&#xff08;install&#xff09; RPM查询&#xff08;query&#xff09; RPM卸载&#xff08;erase&#xff09; RPM升级与更新&#xff08;upgrade/freshen&#xff09; RPM重…...

01背包问题

背包问题的递归解决过程如下&#xff1a; 第一步明确思路 在解决问题之前&#xff0c;为描述方便&#xff0c;首先定义一些变量&#xff1a;Vi表示第 i 个物品的价值&#xff0c;Wi表示第 i 个物品的体积&#xff0c;定义V(i,j)&#xff1a;当前背包容量 j&#xff0c;前 i 个…...

14_FreeRTOS二值信号量

目录 信号量的简介 队列与信号量的对比 二值信号量 二值信号量相关API函数 实验源码 信号量的简介 信号量是一种解决同步问题的机制,可以实现对共享资源的有序访问。 假设有一个人需要在停车场停车 1.首先判断停车场是否还有空车位(判断信号量是否有资源) 2.停车场正好…...

JavaScript随手笔记---轮播图(点击切换)

&#x1f48c; 所属专栏&#xff1a;【JavaScript随手笔记】 &#x1f600; 作  者&#xff1a;我是夜阑的狗&#x1f436; &#x1f680; 个人简介&#xff1a;一个正在努力学技术的CV工程师&#xff0c;专注基础和实战分享 &#xff0c;欢迎咨询&#xff01; &#…...

机器人学 markdown数学公式常用语法

参考链接1 本文包含了markdown常用的数学公式&#xff0c;按照目录可查询选用 初始类 行内数学公式均用两个符号包裹行间数学公式均用两个符号包裹 行间数学公式均用两个符号包裹行间数学公式均用两个符号包裹&#xff0c;用于表示重要的、需在行间单独列出的公式 $行内数学…...

如何使用 Python 语言来编码和解码 JSON 对象

JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式&#xff0c;易于人阅读和编写。 JSON 函数 使用 JSON 函数需要导入 json 库&#xff1a;import json。 函数 描述 json.dumps 将 Python 对象编码成 JSON 字符串 json.loads 将已编码的 JSON 字符串解码为 Pyth…...

【蓝桥云课】求正整数的约数个数

一、求正整数n的约数个数 方法一(常用算法)&#xff1a;从1到n逐一判断其能否整除n&#xff0c;若能整除n即为n的约数&#xff0c;否则不是n的约数。 方法二&#xff1a;从1到n\sqrt{n}n​逐一判断是否为n的约数&#xff0c;当n\sqrt{n}n​为n的约数时&#xff0c;个数加1&…...

刷题记录: wannafly25 E 牛客NC19469 01串 [线段树维护动态dp]

传送门:牛客 题目描述: Bieber拥有一个长度为n的01 串&#xff0c;他每次会选出这个串的一个子串作为曲谱唱歌&#xff0c;考虑该子串从左 往右读所组成的二进制数P。 Bieber每一秒歌唱可以让P增加或减少 2 的 k次方&#xff08;k由Bieber选 定&#xff09;&#xff0c;但必须…...

懂九转大肠的微软New Bing 内测申请教程

最近微软的New Bing开放内测了&#xff0c;网上已经有拿到内测资格的大佬们对比了ChatGPT和New Bing。对比结果是New Bing比ChatGPT更强大。来看看具体对比例子吧 1.时效性更强 ChatGPT的库比较老&#xff0c;跟不上时事&#xff0c;比如你问它九转大肠的梗&#xff0c;ChatG…...

WRAN翻译

基于小波的图像超分辨残差注意力网络 Wavelet-based residual attention network for image super-resolution 代码&#xff1a; https://github.com/xueshengke/WRANSR-keras 摘要&#xff1a; 图像超分辨率技术是图像处理和计算机视觉领域的一项基础技术。近年来&#xff0c…...

ROS学习笔记——第二章 ROS通信机制

主要跟着[1]学习ros::Rate r(1); //错误&#xff0c;应改为ros::Rate r(10);[2]对Topic通信打的比方很形象&#xff0c;便于理解记忆。[3]有整个过程的图片&#xff0c;对于初学者更加友好[4]对发布者的代码注释非常好&#xff0c;方便进一步学习此外CMake官方文档可以查询相关…...

MacOS Pytorch 机器学习环境搭建

学习 Pytorch &#xff0c;首先要搭建好环境&#xff0c;这里将采用 Anoconda Pytorch PyCharm 来一起构建 Pytorch 学习环境。 1. Anoconda 安装与环境创建 Anoconda 官方介绍&#xff1a;提供了在一台机器上执行 Python/R 数据科学和机器学习的最简单方法。 为什么最简单…...

项目——博客系统

文章目录项目优点项目创建创建相应的目录&#xff0c;文件&#xff0c;表&#xff0c;导入前端资源实现common工具类实现拦截器验证用户登录实现统一数据返回格式实现加盐加密类实现encrypt方法实现decrypt方法实现SessionUtil类实现注册页面实现前端代码实现后端代码实现登录页…...

在软件开发中正确使用MySQL日期时间类型的深度解析

在日常软件开发场景中&#xff0c;时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志&#xff0c;到供应链系统的物流节点时间戳&#xff0c;时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库&#xff0c;其日期时间类型的…...

Flask RESTful 示例

目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题&#xff1a; 下面创建一个简单的Flask RESTful API示例。首先&#xff0c;我们需要创建环境&#xff0c;安装必要的依赖&#xff0c;然后…...

【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密

在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...

Java面试专项一-准备篇

一、企业简历筛选规则 一般企业的简历筛选流程&#xff1a;首先由HR先筛选一部分简历后&#xff0c;在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如&#xff1a;Boss直聘&#xff08;招聘方平台&#xff09; 直接按照条件进行筛选 例如&#xff1a…...

关键领域软件测试的突围之路:如何破解安全与效率的平衡难题

在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件&#xff0c;这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下&#xff0c;实现高效测试与快速迭代&#xff1f;这一命题正考验着…...

NPOI操作EXCEL文件 ——CAD C# 二次开发

缺点:dll.版本容易加载错误。CAD加载插件时&#xff0c;没有加载所有类库。插件运行过程中用到某个类库&#xff0c;会从CAD的安装目录找&#xff0c;找不到就报错了。 【方案2】让CAD在加载过程中把类库加载到内存 【方案3】是发现缺少了哪个库&#xff0c;就用插件程序加载进…...

DBLP数据库是什么?

DBLP&#xff08;Digital Bibliography & Library Project&#xff09;Computer Science Bibliography是全球著名的计算机科学出版物的开放书目数据库。DBLP所收录的期刊和会议论文质量较高&#xff0c;数据库文献更新速度很快&#xff0c;很好地反映了国际计算机科学学术研…...

DeepSeek源码深度解析 × 华为仓颉语言编程精粹——从MoE架构到全场景开发生态

前言 在人工智能技术飞速发展的今天&#xff0c;深度学习与大模型技术已成为推动行业变革的核心驱动力&#xff0c;而高效、灵活的开发工具与编程语言则为技术创新提供了重要支撑。本书以两大前沿技术领域为核心&#xff0c;系统性地呈现了两部深度技术著作的精华&#xff1a;…...

STM32标准库-ADC数模转换器

文章目录 一、ADC1.1简介1. 2逐次逼近型ADC1.3ADC框图1.4ADC基本结构1.4.1 信号 “上车点”&#xff1a;输入模块&#xff08;GPIO、温度、V_REFINT&#xff09;1.4.2 信号 “调度站”&#xff1a;多路开关1.4.3 信号 “加工厂”&#xff1a;ADC 转换器&#xff08;规则组 注入…...

代理服务器-LVS的3种模式与调度算法

作者介绍&#xff1a;简历上没有一个精通的运维工程师。请点击上方的蓝色《运维小路》关注我&#xff0c;下面的思维导图也是预计更新的内容和当前进度(不定时更新)。 我们上一章介绍了Web服务器&#xff0c;其中以Nginx为主&#xff0c;本章我们来讲解几个代理软件&#xff1a…...