当前位置: 首页 > news >正文

webrtc QOS笔记一 Neteq直方图算法浅读

webrtc QOS笔记一 Neteq直方图算法浅读

文章目录

    • webrtc QOS笔记一 Neteq直方图算法浅读
      • Histogram Algorithm
      • 获取目标延迟
      • 遗忘因子曲线

Histogram Algorithm

DelayManager::Update()->Histogram::Add() 会根据计算的iat_packet(inter arrival times, =实际包间间隔 / 打包时长),将该iat_packet插入IATVector直方图对应数组下标内。并更新该直方图的数据下标下概率参数。[M88 SRC]
在这里插入图片描述

一共有四步操作:

1、用遗忘因子,对历史数据的出现概率进行遗忘, 并统计概率合
buckets_[i]=buckets_[i]∗forget_factorbuckets\_[i] = buckets\_[i] * forget\_factorbuckets_[i]=buckets_[i]forget_factor

vector_sum=∑0buckets.size()buckets_[i]∗forget_factorvector\_sum=\sum_{0}^{buckets.size()} buckets\_[i] * forget\_factorvector_sum=0buckets.size()buckets_[i]forget_factor

2、增大本次计算到的IAT的概率值。

buckets_[value]=buckets_[value]+(1−forgetfactor_)buckets\_[value]=buckets\_[value]+(1−forget_factor\_)buckets_[value]=buckets_[value]+(1forgetfactor_)

vector_sum=vector_sum+(1−forget_factor_)vector\_sum = vector\_sum + (1-forget\_factor\_)vector_sum=vector_sum+(1forget_factor_)

  • 例:
假如历史bucket 数据为:
buckets_ = {0,0,1,0}遗忘因子为 0.9:
forget_factor = 0.9新来的抖动延迟数据为66ms, 桶间为20ms一个单位, 那插入位置为 66 / 20 = 3,则更新后buckets = {0,0,0.9,0.1}假若使用%95分位的值作为目标延迟, 则更新后的目标延迟为 60ms.

3、调整本次计算到的IAT的概率,使整个IAT的概率分布之和近似为1。调整方式为假设当前概率分布之和为tempSum,则:

vectorsum=1−vectorsumvector_sum=1−vector_sumvectorsum=1vectorsum

buckets[n]={buckets_[n]−Min(∣vector_sum∣,buckets_[n]/16)if(vectorsum>0)buckets_[n]+Min(∣vector_sum∣,buckets_[n]/16)if(vectorsum>0)buckets_[n]= \begin{cases} buckets\_[n]−Min(∣vector\_sum∣,buckets\_[n]/16) if(vector_sum>0) \\ buckets\_[n]+Min(∣vector\_sum∣,buckets\_[n]/16) if(vector_sum>0) \\ \end{cases} buckets[n]={buckets_[n]Min(vector_sum,buckets_[n]/16)if(vectorsum>0)buckets_[n]+Min(vector_sum,buckets_[n]/16)if(vectorsum>0)

4、更新forget_factor_, 使遗忘因子forget_factor_逼近base_forget_factor_

a.使用start_forget_weight_更新(默认初始值start_forget_weight_ = 2,base_forget_factor_=0.9993)

add_count_++add\_count\_++add_count_++
forget_factor_=1−(start_forget_weight_/(add_count_+1))forget\_factor\_=1−(start\_forget\_weight\_/(add\_count\_+1))forget_factor_=1(start_forget_weight_/(add_count_+1))
forget_factor_=Max(0,Min(base_forget_factor_,forget_factor))forget\_factor\_=Max(0,Min(base\_forget\_factor\_,forget\_factor))forget_factor_=Max(0,Min(base_forget_factor_,forget_factor))

b. 其中的3是Q30的值,没有多大 = 0.000091552734375
forget_factor_=forgetfactor_+(base_forget_factor_−forget_factor_+3)/4forget\_factor\_=forget_factor\_+(base\_forget\_factor\_−forget\_factor\_+3)/4forget_factor_=forgetfactor_+(base_forget_factor_forget_factor_+3)/4

获取目标延迟

依据probability获取此百分位的值作为目标延迟(初始值0.97)

∑0nbuckets_[n]>probability\sum_{0}^{n} buckets\_[n] > probability0nbuckets_[n]>probability

int Histogram::Quantile(int probability) {// Find the bucket for which the probability of observing an// inter-arrival time larger than or equal to |index| is larger than or// equal to |probability|. The sought probability is estimated using// the histogram as the reverse cumulant PDF, i.e., the sum of elements from// the end up until |index|. Now, since the sum of all elements is 1// (in Q30) by definition, and since the solution is often a low value for// |iat_index|, it is more efficient to start with |sum| = 1 and subtract// elements from the start of the histogram.int inverse_probability = (1 << 30) - probability;size_t index = 0;        // Start from the beginning of |buckets_|.int sum = 1 << 30;       // Assign to 1 in Q30.sum -= buckets_[index];while ((sum > inverse_probability) && (index < buckets_.size() - 1)) {// Subtract the probabilities one by one until the sum is no longer greater// than |inverse_probability|.++index;sum -= buckets_[index];}return static_cast<int>(index);
}

遗忘因子曲线

测试曲线,调整遗忘因子提高抖动估计灵敏度:

#include <iostream>
#include <cstdint>
#include <vector>uint32_t packet_loss_rate_ = 0;int main()
{std::vector<int> input;std::vector<float> buckets;float forget_factor = 0.9993;float val = 0;for (size_t k = 0; k < 1000; k ++) {val = val * forget_factor + (1-forget_factor);buckets.push_back(val);}for (int i = 0; i < 1000; ++i) {std::cout << buckets[i]<< " ";}return 0;
}

在这里插入图片描述

相关文章:

webrtc QOS笔记一 Neteq直方图算法浅读

webrtc QOS笔记一 Neteq直方图算法浅读 文章目录webrtc QOS笔记一 Neteq直方图算法浅读Histogram Algorithm获取目标延迟遗忘因子曲线Histogram Algorithm DelayManager::Update()->Histogram::Add() 会根据计算的iat_packet(inter arrival times, 实际包间间隔 / 打包时长…...

细分和切入点

本文重点介绍做SEO网站细分和切入点的方法&#xff1a;当我们的行业和关键词竞争性比较大的时候&#xff0c;我们可以考虑对行业或者产品做细分&#xff0c;从而找到切入点。可以按照以下三个方面进行细分。1、按城市细分例如&#xff1a;A&#xff1a;餐饮培训&#xff0c;当前…...

iOS创建Universal Link

iOS 9之前&#xff0c;一直使用的是URL Schemes技术来从外部对App进行跳转&#xff0c;但是iOS系统中进行URL Schemes跳转的时候如果没有安装App&#xff0c;会提示无法打开页面的提示。 iOS 9之后起可以使用Universal Links技术进行跳转页面&#xff0c;这是一种体验更加完美的…...

RuoYi-Vue搭建(若依)

项目简介 RuoYi-Vue基于SpringBootVue前后端分离的Java快速开发框架1.前端采用Vue、Element UI2.后端采用Spring Boot、Spring Security、Redis & Jwt3.权限认证使用Jwt&#xff0c;支持多终端认证系统4.支持加载动态权限菜单&#xff0c;多方式轻松权限控制5.高效率开发&a…...

进程组和用处

进程组&#xff1a;一个或多个进程的集合&#xff0c;进程组id是一个正整数。组长进程&#xff1a;进程组id 进程id组长进程可以创建一个进程组&#xff0c;创建该进程组的进程&#xff0c;终止了&#xff0c;只要进程组有一个进程存在&#xff0c;进程组就存在&#xff0c;与…...

Nacos集群+Nginx负载均衡

搭建Nacos集群 注意: 3个或3个以上Nacos节点才能构成集群。要求服务器内存分配最好大于6G以上&#xff08;如果不够则需修改nacos启动脚本中的默认内存配置&#xff09;根据nacos自带的mysql建库脚本建立对应数据库&#xff08;/conf/nacos-mysql.sql&#xff09;如果是三台服…...

TypeScript 学习之类型兼容

TypeScript 的类型兼容性是基于结构子类型的。 结构类型是一种只使用其成员来描述类型的方式。 interface Named {name: string; }class Person {name: string; }let p: Named; p new Person();// 赋值成功&#xff0c;因为都是结构类型&#xff0c;只要Person 类型的包含 Nam…...

Linux软件管理RPM

目录 前言 RPM软件管理程序&#xff1a;rpm RPM默认安装的路径 PRM讲解前准备工作 RPM安装&#xff08;install&#xff09; RPM查询&#xff08;query&#xff09; RPM卸载&#xff08;erase&#xff09; RPM升级与更新&#xff08;upgrade/freshen&#xff09; RPM重…...

01背包问题

背包问题的递归解决过程如下&#xff1a; 第一步明确思路 在解决问题之前&#xff0c;为描述方便&#xff0c;首先定义一些变量&#xff1a;Vi表示第 i 个物品的价值&#xff0c;Wi表示第 i 个物品的体积&#xff0c;定义V(i,j)&#xff1a;当前背包容量 j&#xff0c;前 i 个…...

14_FreeRTOS二值信号量

目录 信号量的简介 队列与信号量的对比 二值信号量 二值信号量相关API函数 实验源码 信号量的简介 信号量是一种解决同步问题的机制,可以实现对共享资源的有序访问。 假设有一个人需要在停车场停车 1.首先判断停车场是否还有空车位(判断信号量是否有资源) 2.停车场正好…...

JavaScript随手笔记---轮播图(点击切换)

&#x1f48c; 所属专栏&#xff1a;【JavaScript随手笔记】 &#x1f600; 作  者&#xff1a;我是夜阑的狗&#x1f436; &#x1f680; 个人简介&#xff1a;一个正在努力学技术的CV工程师&#xff0c;专注基础和实战分享 &#xff0c;欢迎咨询&#xff01; &#…...

机器人学 markdown数学公式常用语法

参考链接1 本文包含了markdown常用的数学公式&#xff0c;按照目录可查询选用 初始类 行内数学公式均用两个符号包裹行间数学公式均用两个符号包裹 行间数学公式均用两个符号包裹行间数学公式均用两个符号包裹&#xff0c;用于表示重要的、需在行间单独列出的公式 $行内数学…...

如何使用 Python 语言来编码和解码 JSON 对象

JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式&#xff0c;易于人阅读和编写。 JSON 函数 使用 JSON 函数需要导入 json 库&#xff1a;import json。 函数 描述 json.dumps 将 Python 对象编码成 JSON 字符串 json.loads 将已编码的 JSON 字符串解码为 Pyth…...

【蓝桥云课】求正整数的约数个数

一、求正整数n的约数个数 方法一(常用算法)&#xff1a;从1到n逐一判断其能否整除n&#xff0c;若能整除n即为n的约数&#xff0c;否则不是n的约数。 方法二&#xff1a;从1到n\sqrt{n}n​逐一判断是否为n的约数&#xff0c;当n\sqrt{n}n​为n的约数时&#xff0c;个数加1&…...

刷题记录: wannafly25 E 牛客NC19469 01串 [线段树维护动态dp]

传送门:牛客 题目描述: Bieber拥有一个长度为n的01 串&#xff0c;他每次会选出这个串的一个子串作为曲谱唱歌&#xff0c;考虑该子串从左 往右读所组成的二进制数P。 Bieber每一秒歌唱可以让P增加或减少 2 的 k次方&#xff08;k由Bieber选 定&#xff09;&#xff0c;但必须…...

懂九转大肠的微软New Bing 内测申请教程

最近微软的New Bing开放内测了&#xff0c;网上已经有拿到内测资格的大佬们对比了ChatGPT和New Bing。对比结果是New Bing比ChatGPT更强大。来看看具体对比例子吧 1.时效性更强 ChatGPT的库比较老&#xff0c;跟不上时事&#xff0c;比如你问它九转大肠的梗&#xff0c;ChatG…...

WRAN翻译

基于小波的图像超分辨残差注意力网络 Wavelet-based residual attention network for image super-resolution 代码&#xff1a; https://github.com/xueshengke/WRANSR-keras 摘要&#xff1a; 图像超分辨率技术是图像处理和计算机视觉领域的一项基础技术。近年来&#xff0c…...

ROS学习笔记——第二章 ROS通信机制

主要跟着[1]学习ros::Rate r(1); //错误&#xff0c;应改为ros::Rate r(10);[2]对Topic通信打的比方很形象&#xff0c;便于理解记忆。[3]有整个过程的图片&#xff0c;对于初学者更加友好[4]对发布者的代码注释非常好&#xff0c;方便进一步学习此外CMake官方文档可以查询相关…...

MacOS Pytorch 机器学习环境搭建

学习 Pytorch &#xff0c;首先要搭建好环境&#xff0c;这里将采用 Anoconda Pytorch PyCharm 来一起构建 Pytorch 学习环境。 1. Anoconda 安装与环境创建 Anoconda 官方介绍&#xff1a;提供了在一台机器上执行 Python/R 数据科学和机器学习的最简单方法。 为什么最简单…...

项目——博客系统

文章目录项目优点项目创建创建相应的目录&#xff0c;文件&#xff0c;表&#xff0c;导入前端资源实现common工具类实现拦截器验证用户登录实现统一数据返回格式实现加盐加密类实现encrypt方法实现decrypt方法实现SessionUtil类实现注册页面实现前端代码实现后端代码实现登录页…...

Appium+python自动化(十六)- ADB命令

简介 Android 调试桥(adb)是多种用途的工具&#xff0c;该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具&#xff0c;其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利&#xff0c;如安装和调试…...

《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)

CSI-2 协议详细解析 (一&#xff09; 1. CSI-2层定义&#xff08;CSI-2 Layer Definitions&#xff09; 分层结构 &#xff1a;CSI-2协议分为6层&#xff1a; 物理层&#xff08;PHY Layer&#xff09; &#xff1a; 定义电气特性、时钟机制和传输介质&#xff08;导线&#…...

linux 错误码总结

1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...

C++:多态机制详解

目录 一. 多态的概念 1.静态多态&#xff08;编译时多态&#xff09; 二.动态多态的定义及实现 1.多态的构成条件 2.虚函数 3.虚函数的重写/覆盖 4.虚函数重写的一些其他问题 1&#xff09;.协变 2&#xff09;.析构函数的重写 5.override 和 final关键字 1&#…...

C#中的CLR属性、依赖属性与附加属性

CLR属性的主要特征 封装性&#xff1a; 隐藏字段的实现细节 提供对字段的受控访问 访问控制&#xff1a; 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性&#xff1a; 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑&#xff1a; 可以…...

c# 局部函数 定义、功能与示例

C# 局部函数&#xff1a;定义、功能与示例 1. 定义与功能 局部函数&#xff08;Local Function&#xff09;是嵌套在另一个方法内部的私有方法&#xff0c;仅在包含它的方法内可见。 • 作用&#xff1a;封装仅用于当前方法的逻辑&#xff0c;避免污染类作用域&#xff0c;提升…...

Linux-进程间的通信

1、IPC&#xff1a; Inter Process Communication&#xff08;进程间通信&#xff09;&#xff1a; 由于每个进程在操作系统中有独立的地址空间&#xff0c;它们不能像线程那样直接访问彼此的内存&#xff0c;所以必须通过某种方式进行通信。 常见的 IPC 方式包括&#…...

大模型——基于Docker+DeepSeek+Dify :搭建企业级本地私有化知识库超详细教程

基于Docker+DeepSeek+Dify :搭建企业级本地私有化知识库超详细教程 下载安装Docker Docker官网:https://www.docker.com/ 自定义Docker安装路径 Docker默认安装在C盘,大小大概2.9G,做这行最忌讳的就是安装软件全装C盘,所以我调整了下安装路径。 新建安装目录:E:\MyS…...

Appium下载安装配置保姆教程(图文详解)

目录 一、Appium软件介绍 1.特点 2.工作原理 3.应用场景 二、环境准备 安装 Node.js 安装 Appium 安装 JDK 安装 Android SDK 安装Python及依赖包 三、安装教程 1.Node.js安装 1.1.下载Node 1.2.安装程序 1.3.配置npm仓储和缓存 1.4. 配置环境 1.5.测试Node.j…...

使用VMware克隆功能快速搭建集群

自己搭建的虚拟机&#xff0c;后续不管是学习java还是大数据&#xff0c;都需要集群&#xff0c;java需要分布式的微服务&#xff0c;大数据Hadoop的计算集群&#xff0c;如果从头开始搭建虚拟机会比较费时费力&#xff0c;这里分享一下如何使用克隆功能快速搭建一个集群 先把…...