数据结构--顺序表的基本操作--插入 and 删除
数据结构–顺序表的基本操作–插入
顺序表的插入操作
实现目标
ListInsert(&L,i,e):插入操作。在表L中的第i个位置上插入指定元素e。
typedef struct
{int data[MaxSize];int len;
}Sqlist;
代码实现:
#include <stdio.h>
#include <stdlib.h>
#define MaxSize 10 //定于的最大长度typedef struct
{int data[MaxSize];int len;
}Sqlist;
void InitList(Sqlist &L)
{L.len = 0;
}
bool ListInsert(Sqlist &L, int idx, int e)
{if (idx > L.len + 1 || idx < 1) //判断是否合法return false;if (L.len >= MaxSize)return false;for (int j = L.len; j >= idx; j--) //将第idx个元素及之后的元素后移L.data[j] = L.data[j - 1]; L.data[idx - 1] = e; //在位置i处放入eL.len++; //长度加1return true;
}
int main()
{Sqlist L;InitList(L);if (ListInsert(L, 1, 1))printf("Inserted successfully\n");if (ListInsert(L, 2, 2))printf("Inserted successfully\n");// 测试结果for (int i = 0; i < L.len; i++)printf("%d ", L.data[i]);
}
ps:
好的算法,应该具有“健壮性”能处理异常情况,并给使用者反馈。
时间复杂度
最好情况:新元素插入到表尾,不需要移动元素 idx = n+1,循环0次;
最好时间复杂度 \color{red}最好时间复杂度 最好时间复杂度=O(1)
最坏情况:新元素插入到表头,需要将原有的n个元素全都向后移动 idx= 1,循环n次;
最坏时间复杂度 \color{red}最坏时间复杂度 最坏时间复杂度= O(n);
平均情况:假设新元素插入到任何一个位置的概率相同,即idx= 1,2,3, … len+1的概率都是 p = 1 n + 1 p=\frac{1}{n+1} p=n+11 idx = 1,循环n次;idx=2时,循环n-1次; idx=3,循环n-2次…idx=n+1时,循环0次
平均循环次数 = n p + ( n − 1 ) p + ( n − 2 ) p + . . . + 1 p = n ( n + 1 ) 2 × 1 n + 1 = n 2 np + (n-1)p + (n-2)p + ... + 1p = \frac{n(n + 1)}{2} \times \frac{1}{n + 1} = \frac{n}{2} np+(n−1)p+(n−2)p+...+1p=2n(n+1)×n+11=2n
平均时间复杂度 \color{red}{平均时间复杂度} 平均时间复杂度 = O(n)
顺序表的删除操作
实现目标
ListDelete(&L,i,&e):删除操作。删除表L中第i个位置的元素,并用e返回删除元素的值。
代码实现
#include <stdio.h>
#include <stdlib.h>
#define MaxSize 10 //定于的最大长度typedef struct
{int data[MaxSize];int len;
}Sqlist;
void InitList(Sqlist &L)
{L.len = 0;
}
bool ListInsert(Sqlist &L, int idx, int e)
{if (idx > L.len + 1 || idx < 1) //判断是否合法return false;if (L.len >= MaxSize)return false;for (int j = L.len; j >= idx; j--) //将第idx个元素及之后的元素后移L.data[j] = L.data[j - 1]; L.data[idx - 1] = e; //在位置i处放入eL.len++; //长度加1return true;
}
bool ListDelete(Sqlist &L, int idx, int &e)
{if (idx > L.len && idx < 1) //判断i的范围是否有效return false;e = L.data[idx - 1]; //将被删除的元素赋值给efor (int j = idx - 1; j < L.len; j++) //将第i个位置后的元素前移L.data[j] = L.data[j + 1];L.len--; //线性表长度减1return true;
}
int main()
{Sqlist L;InitList(L);if (ListInsert(L, 1, 1))printf("Inserted successfully\n");if (ListInsert(L, 2, 2))printf("Inserted successfully\n");int e = -1;if (ListDelete(L,1,e))printf("Deleted successfully\n");// 测试结果for (int i = 0; i < L.len; i++)printf("%d ", L.data[i]);
}
时间复杂度
最好情况:删除表尾元素,不需要移动其他元素 idx= n 循环0次;
最好时间复杂度 \color{red}最好时间复杂度 最好时间复杂度=O(1)
最坏情况:删除表头元素,需要将后续的n-1个元素全都向前移动 idx= 1,循环 n-1 次;
最坏时间复杂度 \color{red}最坏时间复杂度 最坏时间复杂度= O(n);
平均情况:假设删除任何一个元素的概率相同,即 idx= 1,2,3. … , len的概率都是 p = 1 n p=\frac{1}{n} p=n1
idx = 1,循环 n-1 次; idx=2 时,循环n-2次; idx=3,循环n-3 次… idx = n 时,循环 0 次
平均循环次数 = ( n − 1 ) p + ( n − 2 ) p + . . . . . . + 1 p = n ( n − 1 ) 2 × 1 n = n − 1 2 (n-1)p+(n-2)p+......+1p = \frac{n(n-1)}{2} \times \frac{1}{n} = \frac{n-1}{2} (n−1)p+(n−2)p+......+1p=2n(n−1)×n1=2n−1
平均时间复杂度 \color{red}平均时间复杂度 平均时间复杂度 = O(n)
知识点回顾与重要考点
相关文章:
数据结构--顺序表的基本操作--插入 and 删除
数据结构–顺序表的基本操作–插入 顺序表的插入操作 实现目标 ListInsert(&L,i,e):插入操作。在表L中的第i个位置上插入指定元素e。 typedef struct {int data[MaxSize];int len; }Sqlist;代码实现: #include <stdio.h> #include <stdlib.h> …...
BCSP-玄子Java开发之Java Web编程CH01_初识动态网页
BCSP-玄子Java开发之Java Web编程CH01_初识动态网页 1.1 B/S架构 B/S架构:浏览器/服务器 程序完全部署在服务器上使用浏览器访问服务器无需单独安装客户端软件 为什么要使用B/S架构 B/S与C/S比较B/S架构C/S架构软件安装浏览器需要专门的客户端应用升级维护客户…...
【软件教程】农林生环、水文、海洋、水环境、大气科学、人工智能、碳中和、碳排放、3S、R与统计等软件模型
本文涉及领域水文水资源、大气科学、农林生态、地信遥感、统计分析、编程语言等... 从软件基础到实践案例应用操作,手把手教学,提供永久回放观看和助学群长期辅助指导。适合课题组人员一站式学习,科研人员技术提升、企业单位工程项目、高校论…...
如何加入开源社
开源社成立于 2014 年,是由志愿贡献于开源事业的个人成员,依 “贡献、共识、共治” 原则所组成,始终维持厂商中立、公益、非营利的特点,是最早以 “开源治理、国际接轨、社区发展、项目孵化” 为使命的开源社区联合体。开源社积极…...
软件开发中的破窗效应
应该有很多人已经知道破窗效应【注1】这个社会学 (犯罪学)的词语,破窗效应最先由社会学家James Q. Wilson和George L. Kelling在一篇名为《Broken Windows》的文章中提出【注2】: “一个房子如果窗户破了,没有人去修补…...
机器视觉初步6-1:基于梯度的图像分割
把基于梯度的图像分割单独拿出来。 文章目录 一、图像梯度相关算子的原理1. Sobel算子2. Prewitt算子3. Roberts算子 二、python和halcon算子实现1.python实现2.halcon实现 基于梯度的图像分割方法利用像素之间的梯度信息来进行图像分割。 梯度 1是图像中像素灰度值变化最快的…...
从0开始,精通Go语言Rest微服务架构和开发
说在前面 现在拿到offer超级难,甚至连面试电话,一个都搞不到。 尼恩的技术社区中(50),很多小伙伴凭借 “左手云原生右手大数据”的绝活,拿到了offer,并且是非常优质的offer,据说年…...
Sui x KuCoin Labs夏季黑客松|本周Workshop预告
自Sui x KuCoin Labs夏季黑客松推出以来已有四周的时间,期间收获了众多开发者的积极报名和热情参与。随着黑客松报名即将进入尾声,同期举办的Workshop也迎来了本周的最后一波。本周的黑客松Workshop邀请到MoveEX和Mirror World的负责人作为嘉宾为大家带…...
从电源 LED 读取智能手机的秘密?
研究人员设计了一种新的攻击方法,通过记录读卡器或智能手机打开时的电源 LED,使用 iPhone 摄像头或商业监控系统恢复存储在智能卡和智能手机中的加密密钥。 众所周知,这是一种侧信道攻击。 通过密切监视功耗、声音、电磁辐射或执行操作所需…...
【Linux编辑器-vim使用】
目录 Linux编辑器-vim使用1.vim的基本概念2.vim的基本操作3.vim正常模式命令集4.vim末行模式命令集 Linux编辑器-vim使用 1.vim的基本概念 目前了解的vim有三种模式(其实有好多模式),分别是命令模式、插入模式和底行模式,各模式…...
安装Apache mysql php
目录 一.Apache网站服务 Apache——》静态页面处理——》将静态处理交给PHP Apache简介 安装Apache服务 编辑 安装软件思路 二.安装mysql数据库 1. 安装依赖包 2.创建程序用户管理 3.加压安装包 这边就安装完成了编辑 重点来了 报错了 没有空间 我最后的解决 方法…...
【人工智能】— 神经网络、前向传播、反向传播、梯度下降、局部最小值、多层前馈网络、缓解过拟合的策略
【人工智能】— 神经网络、前向传播、反向传播 前向传播反向传播梯度下降局部最小值多层前馈网络表示能力多层前馈网络局限缓解过拟合的策略 前向传播和反向传播都是神经网络训练中常用的重要算法。 前向传播是指将输入数据从输入层开始经过一系列的权重矩阵和激活函数的计算后…...
小文智能自定义变量详解
在小文交互场景设计时,有一个特殊功能,叫做自定义变量。有时,根据外呼对象的不同,需要对用户传达不同的内容,比如称呼、地址、公司名称等等。此时,就可以使用小文交互的自定义变量功能来实现对不同用户呼出…...
平面电磁波的反射与折射,极化滤波作用
目录 引言 反射定律和折射定律 反射系数和折射系数 平面电磁波在理想介质分界面上的全反射和全折射 全反射 全折射 极化滤波作用 平面电磁波在良导体上的反射与折射 引言 再复杂的电磁波我们都可以看作是很多平面电磁波的叠加 我们在前面介绍的时候,我们认…...
键盘当鼠标用
当鼠标坏掉又需要使用电脑时发现触控板也不能用这就很烦那么键盘当鼠标用教程来了 使用键盘当鼠标的步骤如下: 1. 按住“AltShiftNum Lock”快捷键,弹出鼠标键开启咨询框,点击“是”按钮。 小键盘的数字就是方向/和*就是左右键切换5是单击 …...
动态规划part9 | ● 198.打家劫舍 ● 213.打家劫舍II ● 337.打家劫舍III
文章目录 198.打家劫舍思路思路代码官方题解代码 213.打家劫舍II思路思路代码官方代码困难 337.打家劫舍III思路思路代码官方题解代码困难 今日收获 198.打家劫舍 198.打家劫舍 思路 dp含义,偷前i个房,切第i个房偷 dp[i]max(dp[i-2],dp[i-3])nums[i] …...
【k8s系列】一分钟搭建MicroK8s Dashboard
本文基于上一篇文章的内容进行Dashboard搭建,如果没有看过上一篇的同学请先查阅上一篇文章 k8s系列】使用MicroK8s 5分钟搭建k8s集群含踩坑经验 使用MicroK8s搭建Dashboard很简单,只需要在Master节点按照以下几步操作 1.启用Dashboard插件 microk8s en…...
ArcEngine二次开发0——入门(下载 部署 组件学习)
折腾一下ArcGIS Engine二次开发。 目录 1、开发环境配置2、部署一个ArcGIS Engine应用程序3、ArcObject组件学习4、报错及解决4、其他 1、开发环境配置 参考:https://blog.csdn.net/H48662654/article/details/113384150 (使用ArcEngine前,…...
人工智能---D分离
D分离(D-Separation)是一种用来判断变量是否条件独立的图形化方法。相比于非图形化方法,D-Separation更加直观,且计算简单。对于一个DAG(有向无环图)E,D-Separation方法可以快速的判断出两个节点…...
java spring cloud 企业工程项目管理系统源码-全面的工程项目管理
工程项目管理系统是指从事工程项目管理的企业(以下简称工程项目管理企业)受业主委托,按照合同约定,代表业主对工程项目的组织实施进行全过程或若干阶段的管理和服务。 如今建筑行业竞争激烈,内卷严重,…...
iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘
美国西海岸的夏天,再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至,这不仅是开发者的盛宴,更是全球数亿苹果用户翘首以盼的科技春晚。今年,苹果依旧为我们带来了全家桶式的系统更新,包括 iOS 26、iPadOS 26…...
RocketMQ延迟消息机制
两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数,对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后…...
ESP32 I2S音频总线学习笔记(四): INMP441采集音频并实时播放
简介 前面两期文章我们介绍了I2S的读取和写入,一个是通过INMP441麦克风模块采集音频,一个是通过PCM5102A模块播放音频,那如果我们将两者结合起来,将麦克风采集到的音频通过PCM5102A播放,是不是就可以做一个扩音器了呢…...
图表类系列各种样式PPT模版分享
图标图表系列PPT模版,柱状图PPT模版,线状图PPT模版,折线图PPT模版,饼状图PPT模版,雷达图PPT模版,树状图PPT模版 图表类系列各种样式PPT模版分享:图表系列PPT模板https://pan.quark.cn/s/20d40aa…...
今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存
文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...
python报错No module named ‘tensorflow.keras‘
是由于不同版本的tensorflow下的keras所在的路径不同,结合所安装的tensorflow的目录结构修改from语句即可。 原语句: from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后: from tensorflow.python.keras.lay…...
智能AI电话机器人系统的识别能力现状与发展水平
一、引言 随着人工智能技术的飞速发展,AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术,在客户服务、营销推广、信息查询等领域发挥着越来越重要…...
浪潮交换机配置track检测实现高速公路收费网络主备切换NQA
浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求,本次涉及的主要是收费汇聚交换机的配置,浪潮网络设备在高速项目很少,通…...
ThreadLocal 源码
ThreadLocal 源码 此类提供线程局部变量。这些变量不同于它们的普通对应物,因为每个访问一个线程局部变量的线程(通过其 get 或 set 方法)都有自己独立初始化的变量副本。ThreadLocal 实例通常是类中的私有静态字段,这些类希望将…...
如何通过git命令查看项目连接的仓库地址?
要通过 Git 命令查看项目连接的仓库地址,您可以使用以下几种方法: 1. 查看所有远程仓库地址 使用 git remote -v 命令,它会显示项目中配置的所有远程仓库及其对应的 URL: git remote -v输出示例: origin https://…...
