当前位置: 首页 > news >正文

线性代数速览(一)行列式

文章目录

  • 行列式
    • 🌻 行列式的定义
    • 🌼 行列式的性质
    • 🌷 一些定理
    • 🥀 行列式的计算
    • 🌺 克莱姆法则

行列式

行列式的本质,就是一个数值。

🌻 行列式的定义

有三种定义:1、按行展开;2、按列展开;3、即不按行,也不按列的展开。

按行展开时,行标取标准排列,列标取所有可能。
∣a11a12⋯a1na21a22⋯a2n⋮⋮⋱⋮an1an2⋯ann∣=∑j1j2...jn(−1)N(j1j2...jn)aij1aij2...aijn\left| \begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \\ \end{array} \right| =\sum_{j_1j_2...j_n}(-1)^{N(j_1j_2...j_n)}a_{ij_1}a_{ij_2}...a_{ij_n} a11a21an1a12a22an2a1na2nann=j1j2...jn(1)N(j1j2...jn)aij1aij2...aijn

🌼 行列式的性质

1、转置

转置不会改变行列式的值。

推论:对行成立的性质,对列也成立。
DT=DD^T=DDT=D

2、对换

对换两行,行列式的值变号

∣123456789∣=−∣456123789∣\left| \begin{array}{cccc} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array} \right|=- \left| \begin{array}{cccc} 4 & 5 & 6 \\ 1 & 2 & 3 \\ 7 & 8 & 9 \end{array} \right| 147258369=417528639

3、行相等

行列式中存在两行对应元素相等时,行列式的值为0。

∣123456123∣=0\left| \begin{array}{cccc} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 1 & 2 & 3 \end{array} \right|=0 141252363=0

4、提因子

某一行元素都乘以k,等于用k乘以D。

∣123224789∣=2∣123112789∣\left| \begin{array}{cccc} 1 & 2 & 3 \\ 2 & 2 & 4 \\ 7 & 8 & 9 \end{array} \right|=2 \left| \begin{array}{cccc} 1 & 2 & 3 \\ 1 & 1 & 2 \\ 7 & 8 & 9 \end{array} \right| 127228349=2117218329

5、行成比例

两行元素对应成比例,则行列式值为0。

∣123456246∣=0\left| \begin{array}{cccc} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 2 & 4 & 6 \end{array} \right|=0 142254366=0

推论:某一行全为0,则行列式值为0。

6、可拆性

只拆一行,其余行保持不变。
∣1237+82+39+10889∣=∣123729889∣+∣1238310889∣\left| \begin{array}{cccc} 1 & 2 & 3 \\ 7+8 & 2+3 & 9+10 \\ 8 & 8 & 9 \end{array} \right|= \left| \begin{array}{cccc} 1 & 2 & 3 \\ 7 & 2 & 9 \\ 8 & 8 & 9 \end{array} \right|+ \left| \begin{array}{cccc} 1 & 2 & 3 \\ 8 & 3 & 10 \\ 8 & 8 & 9 \end{array} \right| 17+8822+3839+109=178228399+1882383109

7、行间相加

某一行乘以一个数,加到另一行上去,行列式的值不变。

🌷 一些定理

1、按某行展开

按一行展开,有降阶效果。例如按第 i 行展开,每一项都是元素乘以对应的代数余子式。
D=ai1Ai1+ai2Ai2+ai3Ai3+...+ainAinD=a_{i1}A_{i1}+a_{i2}A_{i2}+a_{i3}A_{i3}+...+a_{in}A_{in}D=ai1Ai1+ai2Ai2+ai3Ai3+...+ainAin

2、异乘变零

某行元素与另一行元素的代余式成绩之和等于零。

ai1Aj1+ai2Aj2+ai3Aj3+...+ainAjn=0(i≠j)a_{i1}A_{j1}+a_{i2}A_{j2}+a_{i3}A_{j3}+...+a_{in}A_{jn}=0(i\not=j)ai1Aj1+ai2Aj2+ai3Aj3+...+ainAjn=0(i=j)

3、拉普拉斯

取定 k 行,有 k 行元素组成的所有 k 阶子式与代数余子式乘积之和等于D。

4、行列式相乘

同阶行列式相乘时,规则同矩阵乘法。非同阶就分别计算两个行列式的值,然后相乘好了。

🥀 行列式的计算

两种基本的计算思路:

  • 化成上三角行列式
  • 按某一行(零多的一行)展开

然后就是一些特殊的行列式的解法(略)。
1、对角型
∣xaaaxaaax∣\left| \begin{array}{cccc} x & a & a \\ a & x & a \\ a & a & x \end{array} \right| xaaaxaaax
2、三叉型
∣x1b1b2b3a1x200a20x30a300x4∣\left| \begin{array}{cccc} x_1 & b_1 & b_2 & b_3\\ a_1 & x_2 & 0 & 0 \\ a_2 & 0 & x_3 & 0 \\ a_3 & 0 & 0 & x_4 \end{array} \right| x1a1a2a3b1x200b20x30b300x4
3、范德蒙德
∣111x1x2x3x12x22x32∣\left| \begin{array}{cccc} 1 & 1 & 1 \\ x_1 & x_2 & x_3 \\ x_1^2 & x_2^2 & x_3^2 \end{array} \right| 1x1x121x2x221x3x32

🌺 克莱姆法则

用于解方程组,但计算量大一般不用。

定理:“齐次线性方程组有非零解“是”系数行列式的值为零“的充分必要条件。


相关文章:

线性代数速览(一)行列式

文章目录行列式🌻 行列式的定义🌼 行列式的性质🌷 一些定理🥀 行列式的计算🌺 克莱姆法则行列式 行列式的本质,就是一个数值。 🌻 行列式的定义 有三种定义:1、按行展开&#xff…...

恭喜山东翰林“智慧园区管理系统”获易知微可视化设计大赛二等奖

数字化经济发展是全球经济发展的重中之重,“数字孪生(Digital Twin)”这一词汇正在成为学术界和产业界的一个热点。数字孪生作为近年来的新兴技术,其与国民经济各产业融合不断深化,推动着各大产业数字化、网络化、智能…...

gulp简单使用

gulp gulp的核心理念是task runner 可以定义自己的一系列任务 等待任务被执行 基于文件stream的构建流 我们可以使用gulp的插件体系来完成某些任务 webpack的核心理念是module bundler webpack是一个模块化的打包工具 可以使用各种各样的loader来加载不同的模块 可以使用各种…...

ce认证机构如何选择?

CE认证想必大家都已经有所了解,它是产品进入欧盟销售的通行证,那么我们在办理CE认证时该怎么进行选择?带大家了解一下CE认证机构,以及该怎么去进行选择? 以下信息由证果果编辑整理,更多认证机构信息请到证果果网站查看。找机构…...

全网招募P图高手!阿里巴巴持续训练鉴假AI

P过的证件如何鉴定为真?三千万网友都晒出了与梅西的合影?图像编辑技术的普及让人人都能P图,但也带来“假图”识别难题,甚至是欺诈问题。 为此,阿里安全联合华中科技大学国家防伪工程中心、国际文档分析识别方向的唯一顶…...

webrtc QOS笔记一 Neteq直方图算法浅读

webrtc QOS笔记一 Neteq直方图算法浅读 文章目录webrtc QOS笔记一 Neteq直方图算法浅读Histogram Algorithm获取目标延迟遗忘因子曲线Histogram Algorithm DelayManager::Update()->Histogram::Add() 会根据计算的iat_packet(inter arrival times, 实际包间间隔 / 打包时长…...

细分和切入点

本文重点介绍做SEO网站细分和切入点的方法:当我们的行业和关键词竞争性比较大的时候,我们可以考虑对行业或者产品做细分,从而找到切入点。可以按照以下三个方面进行细分。1、按城市细分例如:A:餐饮培训,当前…...

iOS创建Universal Link

iOS 9之前,一直使用的是URL Schemes技术来从外部对App进行跳转,但是iOS系统中进行URL Schemes跳转的时候如果没有安装App,会提示无法打开页面的提示。 iOS 9之后起可以使用Universal Links技术进行跳转页面,这是一种体验更加完美的…...

RuoYi-Vue搭建(若依)

项目简介 RuoYi-Vue基于SpringBootVue前后端分离的Java快速开发框架1.前端采用Vue、Element UI2.后端采用Spring Boot、Spring Security、Redis & Jwt3.权限认证使用Jwt,支持多终端认证系统4.支持加载动态权限菜单,多方式轻松权限控制5.高效率开发&a…...

进程组和用处

进程组:一个或多个进程的集合,进程组id是一个正整数。组长进程:进程组id 进程id组长进程可以创建一个进程组,创建该进程组的进程,终止了,只要进程组有一个进程存在,进程组就存在,与…...

Nacos集群+Nginx负载均衡

搭建Nacos集群 注意: 3个或3个以上Nacos节点才能构成集群。要求服务器内存分配最好大于6G以上(如果不够则需修改nacos启动脚本中的默认内存配置)根据nacos自带的mysql建库脚本建立对应数据库(/conf/nacos-mysql.sql)如果是三台服…...

TypeScript 学习之类型兼容

TypeScript 的类型兼容性是基于结构子类型的。 结构类型是一种只使用其成员来描述类型的方式。 interface Named {name: string; }class Person {name: string; }let p: Named; p new Person();// 赋值成功,因为都是结构类型,只要Person 类型的包含 Nam…...

Linux软件管理RPM

目录 前言 RPM软件管理程序:rpm RPM默认安装的路径 PRM讲解前准备工作 RPM安装(install) RPM查询(query) RPM卸载(erase) RPM升级与更新(upgrade/freshen) RPM重…...

01背包问题

背包问题的递归解决过程如下: 第一步明确思路 在解决问题之前,为描述方便,首先定义一些变量:Vi表示第 i 个物品的价值,Wi表示第 i 个物品的体积,定义V(i,j):当前背包容量 j,前 i 个…...

14_FreeRTOS二值信号量

目录 信号量的简介 队列与信号量的对比 二值信号量 二值信号量相关API函数 实验源码 信号量的简介 信号量是一种解决同步问题的机制,可以实现对共享资源的有序访问。 假设有一个人需要在停车场停车 1.首先判断停车场是否还有空车位(判断信号量是否有资源) 2.停车场正好…...

JavaScript随手笔记---轮播图(点击切换)

💌 所属专栏:【JavaScript随手笔记】 😀 作  者:我是夜阑的狗🐶 🚀 个人简介:一个正在努力学技术的CV工程师,专注基础和实战分享 ,欢迎咨询! &#…...

机器人学 markdown数学公式常用语法

参考链接1 本文包含了markdown常用的数学公式,按照目录可查询选用 初始类 行内数学公式均用两个符号包裹行间数学公式均用两个符号包裹 行间数学公式均用两个符号包裹行间数学公式均用两个符号包裹,用于表示重要的、需在行间单独列出的公式 $行内数学…...

如何使用 Python 语言来编码和解码 JSON 对象

JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式,易于人阅读和编写。 JSON 函数 使用 JSON 函数需要导入 json 库:import json。 函数 描述 json.dumps 将 Python 对象编码成 JSON 字符串 json.loads 将已编码的 JSON 字符串解码为 Pyth…...

【蓝桥云课】求正整数的约数个数

一、求正整数n的约数个数 方法一(常用算法):从1到n逐一判断其能否整除n,若能整除n即为n的约数,否则不是n的约数。 方法二:从1到n\sqrt{n}n​逐一判断是否为n的约数,当n\sqrt{n}n​为n的约数时,个数加1&…...

刷题记录: wannafly25 E 牛客NC19469 01串 [线段树维护动态dp]

传送门:牛客 题目描述: Bieber拥有一个长度为n的01 串,他每次会选出这个串的一个子串作为曲谱唱歌,考虑该子串从左 往右读所组成的二进制数P。 Bieber每一秒歌唱可以让P增加或减少 2 的 k次方(k由Bieber选 定),但必须…...

工业安全零事故的智能守护者:一体化AI智能安防平台

前言: 通过AI视觉技术,为船厂提供全面的安全监控解决方案,涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面,能够实现对应负责人反馈机制,并最终实现数据的统计报表。提升船厂…...

Cesium1.95中高性能加载1500个点

一、基本方式&#xff1a; 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...

学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1

每日一言 生活的美好&#xff0c;总是藏在那些你咬牙坚持的日子里。 硬件&#xff1a;OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写&#xff0c;"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...

智能仓储的未来:自动化、AI与数据分析如何重塑物流中心

当仓库学会“思考”&#xff0c;物流的终极形态正在诞生 想象这样的场景&#xff1a; 凌晨3点&#xff0c;某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径&#xff1b;AI视觉系统在0.1秒内扫描包裹信息&#xff1b;数字孪生平台正模拟次日峰值流量压力…...

使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度

文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...

论文阅读:LLM4Drive: A Survey of Large Language Models for Autonomous Driving

地址&#xff1a;LLM4Drive: A Survey of Large Language Models for Autonomous Driving 摘要翻译 自动驾驶技术作为推动交通和城市出行变革的催化剂&#xff0c;正从基于规则的系统向数据驱动策略转变。传统的模块化系统受限于级联模块间的累积误差和缺乏灵活性的预设规则。…...

Selenium 查找页面元素的方式

Selenium 查找页面元素的方式 Selenium 提供了多种方法来查找网页中的元素&#xff0c;以下是主要的定位方式&#xff1a; 基本定位方式 通过ID定位 driver.find_element(By.ID, "element_id")通过Name定位 driver.find_element(By.NAME, "element_name"…...

Android Framework预装traceroute执行文件到system/bin下

文章目录 Android SDK中寻找traceroute代码内置traceroute到SDK中traceroute参数说明-I 参数&#xff08;使用 ICMP Echo 请求&#xff09;-T 参数&#xff08;使用 TCP SYN 包&#xff09; 相关文章 Android SDK中寻找traceroute代码 设备使用的是Android 11&#xff0c;在/s…...

20250609在荣品的PRO-RK3566开发板的Android13下解决串口可以执行命令但是脚本执行命令异常的问题

20250609在荣品的PRO-RK3566开发板的Android13下解决串口可以执行命令但是脚本执行命令异常的问题 2025/6/9 20:54 缘起&#xff0c;为了跨网段推流&#xff0c;千辛万苦配置好了网络参数。 但是命令iptables -t filter -F tetherctrl_FORWARD可以在调试串口/DEBUG口正确执行。…...

ubuntu系统 | docker+dify+ollama+deepseek搭建本地应用

1、docker 介绍与安装 docker安装:1、Ubuntu系统安装docker_ubuntu docker run-CSDN博客 docker介绍及镜像源配置:2、ubuntu系统docker介绍及镜像源和仓库配置-CSDN博客 docker常用命令:3、ubuntu系统docker常用命令-CSDN博客 docker compose安装:4、docker compose-CS…...