Spark弹性分布式数据集
1. Spark RDD是什么
RDD(Resilient Distributed Dataset,弹性分布式数据集)是一个不可变的分布式对象集合,是Spark中最基本的数据抽象。在代码中RDD是一个抽象类,代表一个弹性的、不可变、可分区、里面的元素可并行计算的集合。
每个RDD都被分为多个分区,这些分区运行在集群中的不同节点上。RDD可以包含Python、Java、Scala中任意类型的对象,甚至可以包含用户自定义的对象。RDD的转化操作都是惰性求值的,所以我们不应该把RDD看作存放着特定数据的数据集,而最好把每个RDD当作我们通过转化操作构建出来的、记录如何计算数据的指令列表。
RDD表示只读的分区的数据集,对RDD进行改动,只能通过RDD的转换操作,由一个RDD得到一个新的RDD,新的RDD包含了从其他RDD衍生所必需的信息。RDD之间存在依赖,RDD的执行是按照依赖关系延时计算的。如果依赖关系较长,那么可以通过持久化RDD来切断依赖关系。RDD逻辑上是分区的,每个分区的数据抽象存在,计算的时候会通过一个compute函数得到每个分区的数据。如果RDD是通过已有的文件系统构建的,那么compute函数读取指定文件系统中的数据;如果RDD是通过其他RDD转换而来的,那么compute函数将首先执行转换逻辑,也就是将其他RDD的数据进行转换[yx1] [2] 。
RDD的主要属性如下:
(1)A list of partitions:多个分区。
分区可以看作数据集的基本组成单位。对于RDD来说,每个分区都会被一个计算任务处理,并决定了并行计算的粒度。用户可以在创建RDD时指定RDD的分区数,如果没有指定,就会采用默认值。默认值就是程序所分配到的CPU Core的数目。每个分配的存储是由BlockManager实现的。每个分区都会被逻辑映射成BlockManager的一个Block,而这个Block会被一个task负责计算。
(2)A function for computing each split:计算每个切片(分区)的函数。
Spark中RDD的计算是以分区为单位的,每个RDD都会实现compute函数以达到这个目的。
(3)A list of dependencies on other RDDs:与其他RDD之间的依赖关系。
RDD的每次转换都会生成一个新的RDD,所以RDD之间会形成类似于流水线一样的前后依赖关系。在部分分区数据丢失时,Spark可以通过这个依赖关系重新计算丢失的分区数据,而不是对RDD的所有分区进行重新计算。
(4)Optionally,a Partitioner for key-value RDDs (e.g. to say that the RDD is hash-partitioned):
对存储键-值对的RDD来说,还有一个可选的分区器。只有存储键-值对的RDD,才会有分区器;没有存储键-值对的RDD,其分区器的值是None。分区器不但决定了RDD的本区数量,也决定了父RDDShuffle[yx3] [4] 输出时的分区数量。
(5)Optionally,a list of preferred locations to compute each split on (e.g. block locations for an HDFS file):存储每个切片优先位置的列表。
比如对于一个HDFS文件来说,这个列表保存的就是每个分区所在文件块的位置。按照“移动数据不如移动计算”的理念,Spark在进行任务调度的时候,会尽可能地将计算任务分配到它所要处理的数据块的存储位置。
3. RDD的处理过程
Spark用Scala语言实现了RDD的API,程序开发者可以通过调用API对RDD进行操作。RDD经过一系列的“转换”操作,每一次转换都会产生不同的RDD,以供下一次“转换”操作使用,直到最后一个RDD经过“行动”操作才会被真正计算处理,并输出到外部数据源中,若是中间的数据结果需要复用,则可以进行缓存处理,将数据缓存到内存中。整个处理过程如图所示。


相关文章:
Spark弹性分布式数据集
1. Spark RDD是什么 RDD(Resilient Distributed Dataset,弹性分布式数据集)是一个不可变的分布式对象集合,是Spark中最基本的数据抽象。在代码中RDD是一个抽象类,代表一个弹性的、不可变、可分区、里面的元素可并行计…...
ffmpeg学习记录
1、对图片进行裁剪 ffmpeg -i input.jpg -vf cropiw/3:ih:20:0 caijian.jpg PS: crop100:100:12:34 相同效果: cropw100:h100:x12:y34 2、视频增加文字水印 使用drawtext滤镜进行增加水印 参数 类型 说明 text 字符串 文字 textfile 字符串 文字文件 …...
ChatGPT:为教育创新提供五大机遇
随着智能技术的不断发展,ChatGPT在教育场景中的创新价值可能比我们能够意识到的还要多。比如它可以自动处理作业、在线答疑,可以辅助语言学习、实时沟通,甚至还可以用于评估诊断、科学研究。国内外关于利用ChatGPT实现教育创新的场景描绘已经…...
Educational Codeforces Round 151 (Rated for Div. 2)
Edu 151 A. Forbidden Integer 题意: 你有[1, k]内除了 x x x的整数,每个数可以拿多次,问 ∑ n \sum n ∑n是否可行并构造 思路: 有1必能构造,否则假如没有1,假如有2, 3必定能构造出大于等于2的所有数&…...
【AI机器学习入门与实战】机器学习算法都有哪些分类?
👍【AI机器学习入门与实战】目录 🍭基础篇 🔥 第一篇:【AI机器学习入门与实战】AI 人工智能介绍 🔥 第二篇:【AI机器学习入门与实战】机器学习核心概念理解 🔥 第三篇:【AI机器学习入…...
React之hooks
Hooks函数 1.useState():状态钩子。纯函数组件没有状态,用于为函数组件引入state状态, 并进行状态数据的读写操作。 const [state, setState] useState(initialValue); // state:初始的状态属性,指向状态当前值,类似…...
1.监控分布式--zabbix
文章目录 监控分布式-zabbix、prometheus概念工作原理功能组件部署zabbix安装Nginx和PHP环境部署数据库编码安装zabbix编译安装zabbix server客户端安装zabbix agent服务 监控分布式-zabbix、prometheus 利用一个优秀的监控软件,我们可以: 通过一个友好的界面进行…...
java stream 多个集合去重取交集
文章目录 背景案例代码 背景 原因是需要从表里查多个集合list,然后取多个集合得交集,并且元素是对象,所以使用了下面的方式,当然方式有很多种,仅供参考。 案例 下面提供了一段多个集合join取交集的例子,…...
给LLM装上知识:从LangChain+LLM的本地知识库问答到LLM与知识图谱的结合
第一部分 什么是LangChain:连接本地知识库与LLM的桥梁 作为一个 LLM 应用框架,LangChain 支持调用多种不同模型,提供相对统一、便捷的操作接口,让模型即插即用,这是其GitHub地址,其架构如下图所示 (点此查…...
视频与AI,与进程交互(二) pytorch 极简训练自己的数据集并识别
目标学习任务 检测出已经分割出的图像的分类 2 使用pytorch pytorch 非常简单就可以做到训练和加载 2.1 准备数据 如上图所示,用来训练的文件放在了train中,验证的文件放在val中,train.txt 和 val.txt 分别放文件名称和分类类别ÿ…...
LLM - 第2版 ChatGLM2-6B (General Language Model) 的工程配置
欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://blog.csdn.net/caroline_wendy/article/details/131445696 ChatGLM2-6B 是开源中英双语对话模型 ChatGLM-6B 的第二代版本,在保留了初代模型对话流畅、部署门槛较低等众多优…...
从0开始,手写MySQL事务
说在前面:从0开始,手写MySQL的学习价值 尼恩曾经指导过的一个7年经验小伙,凭借精通Mysql, 搞定月薪40K。 从0开始,手写一个MySQL的学习价值在于: 可以深入地理解MySQL的内部机制和原理,Mysql可谓是面试的…...
React中useState的setState方法请求了好多次
1、问题描述 最近在写react的时候碰到了一个很奇怪的问题。 可以看到那个getXXX()的方法一直不断的被调用,网页一直请求,根本停不下来了。 2、产生原因 要弄明白这个原因,首先要先了解一下react生命周期。 react是组件式的编程,一…...
【MYSQL基础】基础命令介绍
基础命令 MYSQL注释方式 -- 单行注释/* 多行注释 哈哈哈哈哈 哈哈哈哈 */连接数据库 mysql -u root -p12345678退出数据库连接 使用exit;命令可以退出连接 查询MYSQL版本 mysql> select version(); ----------- | version() | ----------- | 8.0.27 | ----------- 1…...
多元回归预测 | Matlab基于灰狼算法优化深度置信网络(GWO-DBN)的数据回归预测,matlab代码回归预测,多变量输入模型
文章目录 效果一览文章概述部分源码参考资料效果一览 文章概述 多元回归预测 | Matlab基于灰狼算法优化深度置信网络(GWO-DBN)的数据回归预测,matlab代码回归预测,多变量输入模型,matlab代码回归预测,多变量输入模型,多变量输入模型 评价指标包括:MAE、RMSE和R2等,代码质…...
校园wifi网页认证登录入口
很多校园wifi网页认证登录入口是1.1.1.1 连上校园网在浏览器写上http://1.1.1.1就进入了校园网 使 用 说 明 一、帐户余额 < 0.00元时,帐号被禁用,需追加网费。 二、在计算中心机房上机的用户,登录时请选择新建帐号时给您指定的NT域&…...
[SpringBoot]Spring Security框架
目录 关于Spring Security框架 Spring Security框架的依赖项 Spring Security框架的典型特征 关于Spring Security的配置 关于默认的登录页 关于请求的授权访问(访问控制) 使用自定义的账号登录 使用数据库中的账号登录 关于密码编码器 使用BCry…...
Unity 之 抖音小游戏本地数据最新存储方法分享
Unity 之 抖音小游戏本地数据最新存储方法分享 一、抖音小游戏文件存储系统背景二、文件存储系统的使用方法2.1 初始化2.1 创建目录2.3 存储数据2.4 删除目录/文件2.5 其他相关操作 三,小结 抖音小游戏是一种基于抖音平台开发的小型游戏,与传统的 APP 不…...
逍遥自在学C语言 | 函数初级到高级解析
前言 函数是C语言中的基本构建块之一,它允许我们将代码组织成可重用、模块化的单元。 本文将逐步介绍C语言函数的基础概念、参数传递、返回值、递归以及内联函数和匿名函数。 一、人物简介 第一位闪亮登场,有请今后会一直教我们C语言的老师 —— 自在…...
Elastic 推出 Elastic AI 助手
作者:Mike Nichols Elastic 推出了 Elastic AI Assistant,这是一款由 ESRE 提供支持的开放式、生成式 AI 助手,旨在使网络安全民主化并支持各种技能水平的用户。 最近发布的 Elasticsearch Relevance Engine™ (ESRE™) 提供了用于创建高度相…...
多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度
一、引言:多云环境的技术复杂性本质 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时,基础设施的技术债呈现指数级积累。网络连接、身份认证、成本管理这三大核心挑战相互嵌套:跨云网络构建数据…...
Python爬虫实战:研究feedparser库相关技术
1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...
系统设计 --- MongoDB亿级数据查询优化策略
系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log,共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题,不能使用ELK只能使用…...
第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明
AI 领域的快速发展正在催生一个新时代,智能代理(agents)不再是孤立的个体,而是能够像一个数字团队一样协作。然而,当前 AI 生态系统的碎片化阻碍了这一愿景的实现,导致了“AI 巴别塔问题”——不同代理之间…...
(转)什么是DockerCompose?它有什么作用?
一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用,而无需手动一个个创建和运行容器。 Compose文件是一个文本文件,通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...
多模态大语言模型arxiv论文略读(108)
CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题:CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者:Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...
Web 架构之 CDN 加速原理与落地实践
文章目录 一、思维导图二、正文内容(一)CDN 基础概念1. 定义2. 组成部分 (二)CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 (三)CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 …...
C++课设:简易日历程序(支持传统节假日 + 二十四节气 + 个人纪念日管理)
名人说:路漫漫其修远兮,吾将上下而求索。—— 屈原《离骚》 创作者:Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊) 专栏介绍:《编程项目实战》 目录 一、为什么要开发一个日历程序?1. 深入理解时间算法2. 练习面向对象设计3. 学习数据结构应用二、核心算法深度解析…...
【WebSocket】SpringBoot项目中使用WebSocket
1. 导入坐标 如果springboot父工程没有加入websocket的起步依赖,添加它的坐标的时候需要带上版本号。 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-websocket</artifactId> </dep…...
高抗扰度汽车光耦合器的特性
晶台光电推出的125℃光耦合器系列产品(包括KL357NU、KL3H7U和KL817U),专为高温环境下的汽车应用设计,具备以下核心优势和技术特点: 一、技术特性分析 高温稳定性 采用先进的LED技术和优化的IC设计,确保在…...
