OpenCV 入门教程:图像读取和显示
OpenCV 入门教程:图像读取和显示
- 导语
- 一、图像读取
- 1.1、导入 OpenCV 库
- 1.2、读取图像文件
- 1.3、图像读取的返回值
- 二、图像显示
- 2.1、创建窗口
- 2.2、图像显示
- 2.3、等待按键
- 2.4、关闭窗口
- 三、示例应用
- 总结
导语
在计算机视觉和图像处理领域,读取和显示图像是最基础且常见的操作之一。 OpenCV 作为一个强大的计算机视觉库,提供了丰富的功能来处理图像数据。本文将以读取和显示图像文件为中心,介绍使用 OpenCV 进行图像读取和显示的基本步骤和实例。
😃😄 ❤️ ❤️ ❤️
一、图像读取
在开始使用 OpenCV 读取图像之前,您需要确保已经正确安装了 OpenCV 库。接下来,我们将按照以下步骤进行操作:
1.1、导入 OpenCV 库
在 Python 脚本中,首先需要导入 OpenCV 库。请在脚本的开头添加以下代码:
import cv2
1.2、读取图像文件
使用 OpenCV 的 imread 函数来读取图像文件。该函数的参数为图像文件的路径,可以是绝对路径或相对路径。例如,要读取名为" image.jpg "的图像文件,可以使用以下代码:
image = cv2.imread('image.jpg')
注意: 请确保图像文件位于当前工作目录或提供了正确的路径。
1.3、图像读取的返回值
imread 函数将图像文件读取为一个多维数组(通常是一个 NumPy 数组),其中包含了图像的像素信息。您可以使用该数组来进行后续的图像处理操作。
二、图像显示
在成功读取图像后,我们可以使用 OpenCV 库来显示图像。请按照以下步骤进行操作:
2.1、创建窗口
在显示图像之前,我们需要先创建一个窗口来容纳图像。可以使用 OpenCV 的 namedWindow 函数来创建窗口。例如,使用以下代码创建一个名为" Image Display "的窗口:
cv2.namedWindow('Image Display')
2.2、图像显示
使用 OpenCV 的 imshow 函数来显示图像。该函数的第一个参数为窗口的名称(与之前创建的窗口名称相对应),第二个参数为要显示的图像。例如,使用以下代码将读取的图像显示在窗口中:
cv2.imshow('Image Display', image)
2.3、等待按键
显示图像后,使用 OpenCV 的 waitKey 函数来等待用户按键。该函数将等待用户按下任意键后继续执行程序。例如,使用以下代码等待用户按键后关闭窗口:
cv2.waitKey(0)
2.4、关闭窗口
使用 OpenCV 的 destroyAllWindows 函数来关闭所有已创建的窗口。例如,使用以下代码关闭之前创建的窗口:
cv2.destroyAllWindows()
三、示例应用
现在,我们来看一个完整的示例应用,将图像读取和显示结合起来:
import cv2# 读取图像文件
image = cv2.imread('image.jpg')# 创建窗口
cv2.namedWindow('Image Display')# 显示图像
cv2.imshow('Image Display', image)# 等待按键
cv2.waitKey(0)# 关闭窗口
cv2.destroyAllWindows()
这个示例应用将打开名为" image.jpg "的图像文件,并在一个窗口中显示图像。用户可以按下任意键来关闭窗口。
展示:

总结
通过本文的介绍,您已经学会了使用 OpenCV 库进行图像读取和显示的基本步骤。通过读取和显示图像,您可以进一步探索和实践 OpenCV 的各种图像处理和计算机视觉功能。祝你在使用 OpenCV 进行图像处理的旅程中取得成功!
相关文章:
OpenCV 入门教程:图像读取和显示
OpenCV 入门教程:图像读取和显示 导语一、图像读取1.1、导入 OpenCV 库1.2、读取图像文件1.3、图像读取的返回值 二、图像显示2.1、创建窗口2.2、图像显示2.3、等待按键2.4、关闭窗口 三、示例应用总结 导语 在计算机视觉和图像处理领域,读取和显示图像…...
什么是GPT?
文章目录 1、什么是GPT?2、gpt版本时间线3、我们能用GPT做什么?4、如何快速体验GPT?5、作为一名开发者,如何在代码中使用GPT?6、如何在现有项目中使用和部署GPT?7、GPT的优缺点?8、对于人工智能…...
如何通过浏览器配置哪些网页不走代理服务器,Lantern开启后部分网页打不开了
浏览器点设置 > 搜索“代理” > “打开计算机的代理设置” > 编辑“使用代理服务器” 搜索“代理” > “打开计算机的代理设置” > 编辑“使用代理服务器”,将不用代理的url链接域名写进来,点击保存。然后刷新打不开的网页,…...
Redis常见面试题
什么是Redis持久化?Redis有哪几种持久化方式?优缺点是什么 把redis内存中的数据持久化到磁盘的过程就是redis持久化。RDB:快照存储,每隔一段时间对redis内存中的数据进程快照存储。优点:恢复数据快 缺点:数据完整性差 AOF:日志追加 把每个写…...
应用零信任原则:案例研究和现场经验教训
随着云架构、软件即服务和分布式劳动力日益成为当今现代组织的主导现实,零信任安全模型已成为首选安全范例。 因此,描述零信任安全原则以及构成零信任架构 (ZTA) 的组件的出版物和资源数量几乎令人瘫痪。该行业缺乏的是一个多样化的示例库,可…...
RabbitMQ系列(14)--Topics交换机的简介与实现
1、Topics交换机的介绍 Topics交换机能让消息只发送往绑定了指定routingkey的队列中去,不同于Direct交换机的是,Topics能把一个消息往多个不同的队列发送;Topics交换机的routingkey不能随意写,必须是一个单词列表,并以…...
解决PyInstaller打包selenium脚本时弹出driver终端窗口
解决PyInstaller打包selenium脚本时弹出driver终端窗口 找到service.py C:\Users\XXX\AppData\Roaming\Python\Python39\site-packages\selenium\webdriver\common\service.py添加creationflags 在第77行添加: creationflags134217728使用PyInstaller打包 pyinstaller -F -w -…...
基于卷积神经网络VGG的猫狗识别
!有需要本项目的实验源码的可以私信博主! 摘要:随着大数据时代的到来,深度学习、数据挖掘、图像处理等已经成为了一个热门研究方向。深度学习是一个复杂的机器学习算法,在语音和图像识别方面取得的效果,远远…...
mysql查询语句练习总结(涵盖所有sql语法)
最近在学习SQL嘛,所以各个地方找题目来练手,毕竟现在能离得开数据库么? Student(S#,Sname,Sage,Ssex) 学生表 Course(C#,Cname,T#) 课程表 SC(S#,C#,score) 成绩表 Teacher(T#,Tname) 教师表 问题: 1、查询“001”课程比“002”课程成绩高的所有学生的学号&#x…...
TypeScript 中 any、unknown、never 和 void 有什么区别?
一 unknown: 未知类型 unknown: 未知类型是typescript 3.0 中引入的新类型。 1.1 所有类型的字面量都可以分配给unknown类型 unknown未知类型,代表变量类型未知,也就是可能为任意类型,所以, 所有类型的字面量都可以分配给unkno…...
算法Day60 | 84.柱状图中最大的矩形,刷题总结
Day60 84.柱状图中最大的矩形刷题总结 84.柱状图中最大的矩形 题目链接:84.柱状图中最大的矩形 遍历每个元素,找到左右元素小于当前元素的,以左右元素间的区间(左开右开区间)所围成的面积中的最大值。 数组尾部加一个…...
python实现pdf转换为word文档,尽量保持格式不变
from pdf2docx import Converterdef convert_pdf_to_word(pdf_path, docx_path, font_path):# 创建 pdf2docx.Converter 对象,用于进行 PDF 到 Word 文档的转换操作。cv Converter(pdf_path)# 设置系统默认字体文件的路径cv.font_path font_path# docx_path 转换…...
TCP / IP 网际层的 4 个重要协议
TCP / IP 网际层的 4 个重要协议 TCP/IP(Transmission Control Protocol/Internet Protocol)是一组用于互联网通信的协议。其中,网际层(Internet Layer)是TCP/IP协议栈中的一个关键层,主要负责网络间的数据…...
MySQL阶段DAY20(附笔记)
【注意】:工厂模式学习知识结构如下: (一)、单例模式 1.Single类: 使用懒汉式:对象的延迟加载,安全的,高效的应用 双重判断提升效率和安全性 package singleton;/** 单例设计模式之…...
考场作弊行为自动抓拍告警算法 yolov7
考场作弊行为自动抓拍告警系统通过yolov7python网络模型算法,考场作弊行为自动抓拍告警算法实时监测考场内所有考生的行为,对考生的行为进行自动抓拍,并分析判断是否存在作弊行为。YOLOv7 的发展方向与当前主流的实时目标检测器不同ÿ…...
在Linux中安装RabbitMQ
RabbitMQ下载网址 Socat下载网址 erlang下载网址 RabbitMQ安装包依赖于Erlang语言包的支持,所以需要先安装Erlang语言包,再安装RabbitMQ安装包 通过Xftp软件将这三个压缩包上传到linux中的opt目录下 ,双击即可 在安装之前先查询…...
electron 单个实例控制以及日志输出
electron 单个实例控制 在使用electron打包的应用程序的时候,点击应用图标会打开多个实例,要想控制单个实例,需要通过 app.requestSingleInstanceLock() 判断当前程序的实例是否为当前取得锁, 或者说, 当前实例是否为…...
基于matlab使用AprilTag标记进行相机校准(附源码)
一、前言 AprilTags被广泛用作物体检测、定位应用的视觉标记,并作为相机校准的目标。AprilTags类似于QR码,但旨在编码更少的数据,因此可以更快地解码,这对于实时机器人应用程序非常有用。使用 AprilTags 作为校准模式的优点包括更…...
计算机网络————运输层
文章目录 概述UDPTCP首部格式 连接管理连接建立连接释放 概述 从IP层看,通信双方是两个主机。 但真正进行通信的实体是在主机中的进程,是这个主机中的一个进程和另一个主机中的一个进程在交换数据。 所以严格的讲,两个主机进行通信就是两个…...
【雕爷学编程】Arduino动手做(154)---AFMotor电机扩展板模块
37款传感器与执行器的提法,在网络上广泛流传,其实Arduino能够兼容的传感器模块肯定是不止这37种的。鉴于本人手头积累了一些传感器和执行器模块,依照实践出真知(一定要动手做)的理念,以学习和交流为目的&am…...
KubeSphere 容器平台高可用:环境搭建与可视化操作指南
Linux_k8s篇 欢迎来到Linux的世界,看笔记好好学多敲多打,每个人都是大神! 题目:KubeSphere 容器平台高可用:环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...
(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)
题目:3442. 奇偶频次间的最大差值 I 思路 :哈希,时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况,哈希表这里用数组即可实现。 C版本: class Solution { public:int maxDifference(string s) {int a[26]…...
第19节 Node.js Express 框架
Express 是一个为Node.js设计的web开发框架,它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用,和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...
大数据学习栈记——Neo4j的安装与使用
本文介绍图数据库Neofj的安装与使用,操作系统:Ubuntu24.04,Neofj版本:2025.04.0。 Apt安装 Neofj可以进行官网安装:Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...
第25节 Node.js 断言测试
Node.js的assert模块主要用于编写程序的单元测试时使用,通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试,通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...
分布式增量爬虫实现方案
之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面,避免重复抓取,以节省资源和时间。 在分布式环境下,增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路:将增量判…...
AGain DB和倍数增益的关系
我在设置一款索尼CMOS芯片时,Again增益0db变化为6DB,画面的变化只有2倍DN的增益,比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析: 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...
Git 3天2K星标:Datawhale 的 Happy-LLM 项目介绍(附教程)
引言 在人工智能飞速发展的今天,大语言模型(Large Language Models, LLMs)已成为技术领域的焦点。从智能写作到代码生成,LLM 的应用场景不断扩展,深刻改变了我们的工作和生活方式。然而,理解这些模型的内部…...
【Post-process】【VBA】ETABS VBA FrameObj.GetNameList and write to EXCEL
ETABS API实战:导出框架元素数据到Excel 在结构工程师的日常工作中,经常需要从ETABS模型中提取框架元素信息进行后续分析。手动复制粘贴不仅耗时,还容易出错。今天我们来用简单的VBA代码实现自动化导出。 🎯 我们要实现什么? 一键点击,就能将ETABS中所有框架元素的基…...
面试高频问题
文章目录 🚀 消息队列核心技术揭秘:从入门到秒杀面试官1️⃣ Kafka为何能"吞云吐雾"?性能背后的秘密1.1 顺序写入与零拷贝:性能的双引擎1.2 分区并行:数据的"八车道高速公路"1.3 页缓存与批量处理…...
