认识主被动无人机遥感数据、预处理无人机遥感数据、定量估算农林植被关键性状、期刊论文插图精细制作与Appdesigner应用开发
目录
第一章、认识主被动无人机遥感数据
第二章、预处理无人机遥感数据
第三章、定量估算农林植被关键性状
第四章、期刊论文插图精细制作与Appdesigner应用开发
更多推荐
遥感技术作为一种空间大数据手段,能够从多时、多维、多地等角度,获取大量的农情数据。数据具有面状、实时、非接触、无伤检测等显著优势,是智慧农业必须采用的重要技术之一。本教程主要针对农业、林业、生态、遥感背景的对无人机遥感有兴趣的初学者(本科生、低年级研究生),MATLAB编程初学者小白。通过学习,将掌握无人机遥感数据预处理的全链条理论与实践流程、典型农林植被性状的估算理论与实践方法、利用MATLAB进行编程实践(脚本与GUI开发)以及期刊论文插图制作等。可用于支持科研或应用项目开展、研究技术方案推进、期刊论文写作等。
第一章、认识主被动无人机遥感数据
1. 初识主被动无人机遥感数据
①无人机平台与坐标系
②遥感载荷类型与数据
③飞行参数设置与计算
④无人机VS卫星主被动遥感数据特点
2. 读写无人机遥感数据
①读写带有/不带地理坐标的无人机影像
②读写超大尺寸无人机影像
③读写影像元数据信息
④读写激光雷达/摄影测量点云
第二章、预处理无人机遥感数据
1. 概述遥感数据预处理
①地物反射辐射信号
②地物二向反射特性表征
③无人机影像的几何问题
2.辐射校正无人机影像
①光学测量系统辐射校正
②反射率校正
③BRDF与阴影校正
3.几何校正无人机影像
①原始影像的几何畸变校正
②多光谱影像的几何配准
③正射影像地理几何校正
第三章、定量估算农林植被关键性状
1. 估算植被覆盖度fCover与光合有效辐射吸收比fPAR
①基于RGB图像分割的估算
②基于像元分解的估算
③基于点云的估算
④基于激光雷达回波的估算
2. 估算叶面积指数LAI
①基于间隙率模型的估算
②基于辐射传输模型的估算
③基于机器学习模型的估算
3. 估算叶绿素含量LCC
①了解叶片辐射传输模型
②基于辐射传输模型的估算
③基于植被指数的估算
第四章、期刊论文插图精细制作与Appdesigner应用开发
1.制作精美的期刊论文插图
①论文插图的尺寸、配色、字体要点
②散点图、直方图、折线图、小提琴图、密度图、假彩色图等制作
2.利用Appdesigner进行GUI开发
①认识Appdesigner
②函数调用与更新
③窗口间参数互传
注:请提前自备电脑及安装所需软件
更多推荐
无人机遥感在农林信息提取中的实现方法与GIS融合应用_无人机在gis中的应用_WangYan2022的博客-CSDN博客注重理论与实践相结合,针对高光谱建模的具体实现方法,系统地阐释基于信息量方法的建模思路与基本原理,并进行深入地实现方法培训,涉及数据获取、分析、处理、软件操作和结果分析等主要环节。_无人机在gis中的应用https://blog.csdn.net/WangYan2022/article/details/126946189?spm=1001.2014.3001.5502无人机生态环境监测、图像处理与GIS数据分析综合应用_无人机点云数据采集及gis技术综合研究背景介绍_WangYan2022的博客-CSDN博客融合无人机生态环境监测技术和ArcGIS数据分析技术,通过具体案例分析与软件操作实践,详细介绍包括无人机多源遥感影像数据采集(可见光、多光谱、热红外、激光雷达等)、影像数据拼接、空间数据编辑、空间数据分析、空间数据专题制图等流程的一条完整作业“流水线”。_无人机点云数据采集及gis技术综合研究背景介绍
https://blog.csdn.net/WangYan2022/article/details/126848129?spm=1001.2014.3001.5502基于PyTorch深度学习遥感影像地物分类与目标检测、分割及遥感影像问题深度学习优化_在gee里面用pytorch_WangYan2022的博客-CSDN博客理解卷积神经网络背后的数学模型和计算机算法,掌握利用PyTorch为基础的遥感影像地物分类,遥感图像目标检测,以及遥感图像目标分割等应用。_在gee里面用pytorch
https://blog.csdn.net/WangYan2022/article/details/126757557?spm=1001.2014.3001.5502近地面无人机植被定量遥感与生理参数反演_定量遥感反演案例_WangYan2022的博客-CSDN博客通过详细的理论讲解及多案例操作,从实践技术应用的角度出发,综合该领域学习者的需求及特点,深度掌握实践应用方法。_定量遥感反演案例
https://blog.csdn.net/WangYan2022/article/details/126721108?spm=1001.2014.3001.5502GEE入门学习,遥感云大数据分析、管理与可视化以及在林业应用丨灾害、水体与湿地领域应用丨GPT模型应用_WangYan2022的博客-CSDN博客近年来遥感技术得到了突飞猛进的发展,航天、航空、临近空间等多遥感平台不断增加,数据的空间、时间、光谱分辨率不断提高,数据量猛增,遥感数据已经越来越具有大数据特征。遥感大数据的出现为相关研究提供了前所未有的机遇,同时如何处理好这些数据也提出了巨大的挑战。传统的工作站和服务器已经无法胜任大区域、多尺度海量遥感数据处理的需要。
https://blog.csdn.net/WangYan2022/article/details/131678440?spm=1001.2014.3001.5502
相关文章:
认识主被动无人机遥感数据、预处理无人机遥感数据、定量估算农林植被关键性状、期刊论文插图精细制作与Appdesigner应用开发
目录 第一章、认识主被动无人机遥感数据 第二章、预处理无人机遥感数据 第三章、定量估算农林植被关键性状 第四章、期刊论文插图精细制作与Appdesigner应用开发 更多推荐 遥感技术作为一种空间大数据手段,能够从多时、多维、多地等角度,获取大量的…...
数学建模的六个步骤
一、模型准备 了解问题的实际背景,明确其实际意义,掌握对象的各种信息,以数学思路来解释问题的精髓,数学思路贯彻问题的全过程,进而用数学语言来描述问题。要求符合数学理论,符合数学习惯,清晰…...

【计算机组成原理】24王道考研笔记——第二章 数据的表示和运算
第二章 数据的表示和运算 一、数值与编码 1.1 进制转换 任意进制->十进制: 二进制<->八进制、十六进制: 各种进制的常见书写方式: 十进制->任意进制:(用拼凑法最快) 真值:符合人…...

JQ-6 Bootstrap入门到实战;Bootstrap的(优缺点、安装、响应式容器原理、网格系统、响应式工具类、Bootstrap组件);小项目实践
目录 1_认识Bootstrap1.1_概念1.2_起源和历史1.3_Bootstrap优缺点 2_Bootstrap4的安装2.1_方式一 CDN2.2_方式二 : 下载源码引入2.3_方式三 : npm安装 3_Bootstrap初体验4_响应式容器原理4.1_屏幕尺寸的分割点(Breakpoints)4.2_响应式容器Containers 5_网…...

如何用3D格式转换工具HOOPS Exchange读取颜色和材料信息?
作为应用程序开发人员,非常希望导入部件的图形表示与它们在创作软件中的外观尽可能接近。外观可以在每个B-Rep面的基础上指定,而且,通过装配层次结构的特定路径可以在视觉外观上赋予父/子覆盖。HOOPS ExchangeHOOPS Exchange可捕获有关来自各…...
[Ubuntu 22.04] 安装docker,并设置镜像加速
for pkg in docker.io docker-doc docker-compose podman-docker containerd runc; do sudo apt-get remove $pkg; doneapt install -y curl vim wget gnupg dpkg apt-transport-https lsb-release ca-certificates# 添加Docker的GPG公钥和apt源 #curl -sSL https://download.d…...

如何使用GPT作为SQL查询引擎的自然语言
生成的AI输出并不总是可靠的,但是下面我会讲述如何改进你的代码和查询的方法,以及防止发送敏感数据的方法。与大多数生成式AI一样,OpenAI的API的结果仍然不完美,这意味着我们不能完全信任它们。幸运的是,现在我们可以…...
Servlet3.0上传文件
页面: <!DOCTYPE html> <html> <head> <meta charset"UTF-8"> <title>文件上传</title> </head> <body> <form action"fileup" enctype"multipart/form-data" method"…...
【ARM Cache 系列文章 6 番外篇 – MMU, MPU, SMMU, PMU 差异与关系】
文章目录 MMU 与 MPU 之间的关系MMU 与 SMMU 之间的关系MMU 与 PMU 之间的关系 上篇文章:ARM Cache 系列文章 5 – 内存屏障ISB/DSB/DMB MMU 与 MPU 之间的关系 MMU(Memory Management Unit)和MPU(Memory Protection Unit&#…...

NetSuite ERP顾问的进阶之路
目录 1.修养篇 1.1“道”是什么?“器”是什么? 1.2 读书这件事儿 1.3 十年计划的力量 1.3.1 一日三省 1.3.2 顾问损益表 1.3.3 阶段课题 2.行为篇 2.1协作 2.2交流 2.3文档管理 2.4时间管理 3.成长篇 3.1概念能力 3.1.1顾问的知识结构 …...

js 新浏览器打开页面
博主gzh:“程序员野区”,回复“加群”,可进博主web前端微信群 效果如下 setTimeout(()>{var url "https://blog.csdn.net/xuelang532777032?typeblog"; //要打开的网页地址var features "height500, width800, top100, left100, …...

jmeter软件测试实验(附源码以及配置)
jmeter介绍 JMeter是一个开源的性能测试工具,由Apache软件基金会开发和维护。它主要用于对Web应用程序、Web服务、数据库和其他类型的服务进行性能测试。JMeter最初是为测试Web应用程序而设计的,但现在已经扩展到支持更广泛的应用场景。 JMeter 可对服务…...

ZooKeeper原理剖析
1.ZooKeeper简介 ZooKeeper是一个分布式、高可用性的协调服务。在大数据产品中主要提供两个功能: 帮助系统避免单点故障,建立可靠的应用程序。提供分布式协作服务和维护配置信息。 2.ZooKeeper结构 ZooKeeper集群中的节点分为三种角色:Le…...

【算组合数】CF1833 F
少见地秒了这道1700,要是以后都这样就好了.... Problem - F - Codeforces 题意: 给定一个数列,让你在这个数列里找一个大小为M的子集,使得极差不超过M 思路: 子集,不是子序列,说明和顺序无…...

Attention详解(自用)
encoder-decoder 分心模型:没有引入注意力的模型在输入句子比较短的时候问题不大,但是如果输入句子比较长,此时所有语义完全通过一个中间语义向量来表示,单词自身的信息已经消失,可想而知会丢失很多细节信息࿰…...
pptx转pdf工具类
引入依赖 <dependency><groupId>org.apache.poi</groupId><artifactId>poi</artifactId><version>5.0.0</version></dependency><dependency><groupId>org.apache.poi</groupId><artifactId>poi-ooxm…...

2023华为OD统一考试(B卷)题库清单(持续收录中)以及考点说明
目录 专栏导读2023 B卷 “新加题”(100分值)2023Q2 100分2023Q2 200分2023Q1 100分2023Q1 200分2022Q4 100分2022Q4 200分牛客练习题 专栏导读 本专栏收录于《华为OD机试(JAVA)真题(A卷B卷)》。 刷的越多&…...

论文笔记--Won’t Get Fooled Again: Answering Questions with False Premises
论文笔记--Won’t Get Fooled Again: Answering Questions with False Premises 1. 文章简介2. 文章概括3 文章重点技术3.1 大模型面对FPQs的表现3.2 False QAs数据集3.3 训练和评估 4. 文章亮点5. 原文传送门 1. 文章简介 标题:Won’t Get Fooled Again: Answerin…...
【Django】include app_name和namespace的区别
app_name 区分不同app的url的name,防止不同app之间,url_name的重名,引用时加入app_name:name namespace 区分不同路由 include同一个view module的情况, 让不同路由进入同一个view中,进行reverse时,根据对…...

(黑客)自学笔记
特别声明: 此教程为纯技术分享!本教程的目的决不是为那些怀有不良动机的人提供及技术支持!也不承担因为技术被滥用所产生的连带责任!本教程的目的在于最大限度地唤醒大家对网络安全的重视,并采取相应的安全措施&#x…...

【期末课程设计】学生成绩管理系统
因其独特,因其始终如一 文章目录 一、学生成绩管理系统介绍 二、学生成绩管理系统设计思路 三、源代码 1. test.c 2. Student Management System.c 3.Stu_System.c 4.Teacher.c 5.Student Management System.h 前言: 学生成绩管理系统含教师…...

【论文笔记】KDD2019 | KGAT: Knowledge Graph Attention Network for Recommendation
Abstract 为了更好的推荐,不仅要对user-item交互进行建模,还要将关系信息考虑进来 传统方法因子分解机将每个交互都当作一个独立的实例,但是忽略了item之间的关系(eg:一部电影的导演也是另一部电影的演员)…...
ES6:基础使用,积累
一、理解ES6 ES6是ECMAScript 6.0的简称,也被称为ES2015。它是ECMAScript的第六个版本,是JavaScript标准的下一个重大更新。ES6于2015年6月发布,新增了许多新的语言特性和API,包括箭头函数、let和const关键字、模板字符串、解构赋…...
Android端上传文件到Spring Boot后端
准备 确定好服务器端文件保存的位置确定好请求参数名(前后端要保持一致的喔)如果手机是通过usb连接到电脑的,需要执行一下: adb reverse tcp:8080 tcp:8080 AndroidManifest.xml的<application/>节点中加上: android:usesC…...

使用GGML和LangChain在CPU上运行量化的llama2
Meta AI 在本周二发布了最新一代开源大模型 Llama 2。对比于今年 2 月发布的 Llama 1,训练所用的 token 翻了一倍,已经达到了 2 万亿,对于使用大模型最重要的上下文长度限制,Llama 2 也翻了一倍。 在本文,我们将紧跟趋…...

微服务基础理论
微服务简介 微服务Microservices之父,马丁.福勒,对微服务大概的概述如下: 就目前而言,对于微服务业界并没有一个统一的、标准的定义(While there is no precise definition of this architectural style ) 。但通在其…...
《向量数据库指南》:向量数据库Pinecone管理数据教程
目录 连接到索引 指定索引端点 调用whoami以检索您的项目名称。 描述索引统计信息 获取向量 更新向量 完整更新 ℹ️注意 部分更新 ⚠️注意 ℹ️注意 删除向量...
以深度为基础的Scikit-learn: 高级特性与最佳实践
Scikit-learn是一个广受欢迎的Python库,它用于解决许多机器学习的问题。在本篇文章中,我们将进一步探索Scikit-learn的高级特性和最佳实践。 一、管道机制 Scikit-learn的Pipeline类是一种方便的工具,它允许你将多个步骤(如数据…...
Autosar MCAL-S32K324Dio配置-基于EB
文章目录 DioPost Build Variant UsedConfig VariantDioConfigDioPortDioChannelDioChannelGroupDioConfigDio Development Error DetectSIUL2 IP Dio Development Error DetectDio Version Info ApiDio Reverse Port BitsDio Flip Channel ApiDio Rea...

【Spring Boot】单元测试
单元测试 单元测试在日常项目开发中必不可少,Spring Boot提供了完善的单元测试框架和工具用于测试开发的应用。接下来介绍Spring Boot为单元测试提供了哪些支持,以及如何在Spring Boot项目中进行单元测试。 1.Spring Boot集成单元测试 单元测试主要用…...