当前位置: 首页 > news >正文

论文笔记--Won’t Get Fooled Again: Answering Questions with False Premises

论文笔记--Won’t Get Fooled Again: Answering Questions with False Premises

  • 1. 文章简介
  • 2. 文章概括
  • 3 文章重点技术
    • 3.1 大模型面对FPQs的表现
    • 3.2 False QAs数据集
    • 3.3 训练和评估
  • 4. 文章亮点
  • 5. 原文传送门

1. 文章简介

  • 标题:Won’t Get Fooled Again: Answering Questions with False Premises
  • 作者:Shengding Hu, Yifan Luo, Huadong Wang, Xingyi Cheng, Zhiyuan Liu, Maosong Sun
  • 日期:2023
  • 期刊:arxiv

2. 文章概括

  文章给出了第一份False Premises Questions(FPQs)数据集,并证明了PLMs本身具有识别False premise的能力,通过在少量FPQ上微调可以激活该能力。
  下图为PLM能力激活的一个简单示例
示例

3 文章重点技术

3.1 大模型面对FPQs的表现

  一般来说,我们直接问大模型"Does the sun have eyes?“可以得到正确的答案"No”,但当我们把错误问题作为前提提问其它问题时,比如"How many eyes does the sun have?",这时候大模型往往会把错误问题中蕴含的前提当真,并继续给出错误的答案。具体来说,我们用<subject, predicate, object>表示一个三元组,上述问题的三元组为<triple, quantity, ?>,其中triple为<syn, has_property, eye>,针对此类triple中嵌套triple的问题,大模型往往无法正确作答。
  文章测试了Bloon, OPT, Jurassic-1, GPT-3对一些FPQ的问答能力。如下表所示,大模型模型可以直接回答出单个三元组的问题,但无法正确回答错误假设下的问题FPQs。
FPQs-PLMs

3.2 False QAs数据集

  为了解决上述问题,文章构建了一份False QAs数据集。由于从自然语言语料库中收集数据可能会是的收集的问题不可控,且难以对其校正。为此,文章手动构建数据集,希望构建的False QA数据集具有broad coverage, high quality, few shortcuts, detailed explanations。
  首先,文章希望数据集包含尽可能多的问题分类。文章对错误问题进行了两种分类:按照错误类型进行分类(包括尝试错误、逻辑错误等);按照问题格式进行分类(包括事实类畏难而退,描述类问题等)。最后得到的数据集包括8种错误类型的问题,6种问题格式的问题,且每种类型的问题数量仅可能一致。
  作者雇用了20个人类标记员来创造FPQs。首先从Generic-sKB数据库中获取单词为源单词及对应的简短的描述性句子,然后标记员根据该单词进行发散思考创造出包含/与单词相关的错误前提的问题。为了让PLMs更深刻地理解任务,我们让标记员对每个FPQs进行修正,且需保证修改最小从而确保模型可以学习到必要的知识。此外,每个标记员被要求对FPQs为什么是错误的给出解释,且解释不能仅仅是对错误的否定。下图为标记数据的流程。
annomation  最后,文章得到了FalseQA数据集,包含2365个问题对(包含False QA和修正后的True QA)。

3.3 训练和评估

  为了让模型同时判断问题的假设是为真 并给出合理的解释,我们让模型生成判别tokens: “tricky question"或是"true question”,然后继续生成对判断的解释。由于判别tokens的token数很少,文章增加了额外的binary loss来进行学习,该loss和模型的生成时loss的比例为1。
  评估阶段,如果生成的答案中包含“tricku question”,则认为该问题为一个FPQ,否则为一个TPQ。

4. 文章亮点

  文章给出了第一个False Premise Questions数据集,在其基础上进行学习可以增强大模型对FPQs问题的判别和解释能力。且数值实验表明,在学习FPQs的过程中增加少量的原始QA数据(每次迭代使用小部分重复数据即可)可以有效地防止大模型的灾难性遗忘现象发生。False QAs数据集可供科研工作者进行进一步的该类研究,且文章提出的学习思路可供未来的QA数据集构建参考。

5. 原文传送门

Won’t Get Fooled Again: Answering Questions with False Premises

相关文章:

论文笔记--Won’t Get Fooled Again: Answering Questions with False Premises

论文笔记--Won’t Get Fooled Again: Answering Questions with False Premises 1. 文章简介2. 文章概括3 文章重点技术3.1 大模型面对FPQs的表现3.2 False QAs数据集3.3 训练和评估 4. 文章亮点5. 原文传送门 1. 文章简介 标题&#xff1a;Won’t Get Fooled Again: Answerin…...

【Django】include app_name和namespace的区别

app_name 区分不同app的url的name&#xff0c;防止不同app之间&#xff0c;url_name的重名&#xff0c;引用时加入app_name:name namespace 区分不同路由 include同一个view module的情况&#xff0c; 让不同路由进入同一个view中&#xff0c;进行reverse时&#xff0c;根据对…...

(黑客)自学笔记

特别声明&#xff1a; 此教程为纯技术分享&#xff01;本教程的目的决不是为那些怀有不良动机的人提供及技术支持&#xff01;也不承担因为技术被滥用所产生的连带责任&#xff01;本教程的目的在于最大限度地唤醒大家对网络安全的重视&#xff0c;并采取相应的安全措施&#x…...

【期末课程设计】学生成绩管理系统

因其独特&#xff0c;因其始终如一 文章目录 一、学生成绩管理系统介绍 二、学生成绩管理系统设计思路 三、源代码 1. test.c 2. Student Management System.c 3.Stu_System.c 4.Teacher.c 5.Student Management System.h 前言&#xff1a; 学生成绩管理系统含教师…...

【论文笔记】KDD2019 | KGAT: Knowledge Graph Attention Network for Recommendation

Abstract 为了更好的推荐&#xff0c;不仅要对user-item交互进行建模&#xff0c;还要将关系信息考虑进来 传统方法因子分解机将每个交互都当作一个独立的实例&#xff0c;但是忽略了item之间的关系&#xff08;eg&#xff1a;一部电影的导演也是另一部电影的演员&#xff09…...

ES6:基础使用,积累

一、理解ES6 ES6是ECMAScript 6.0的简称&#xff0c;也被称为ES2015。它是ECMAScript的第六个版本&#xff0c;是JavaScript标准的下一个重大更新。ES6于2015年6月发布&#xff0c;新增了许多新的语言特性和API&#xff0c;包括箭头函数、let和const关键字、模板字符串、解构赋…...

Android端上传文件到Spring Boot后端

准备 确定好服务器端文件保存的位置确定好请求参数名&#xff08;前后端要保持一致的喔&#xff09;如果手机是通过usb连接到电脑的&#xff0c;需要执行一下&#xff1a; adb reverse tcp:8080 tcp:8080 AndroidManifest.xml的<application/>节点中加上: android:usesC…...

使用GGML和LangChain在CPU上运行量化的llama2

Meta AI 在本周二发布了最新一代开源大模型 Llama 2。对比于今年 2 月发布的 Llama 1&#xff0c;训练所用的 token 翻了一倍&#xff0c;已经达到了 2 万亿&#xff0c;对于使用大模型最重要的上下文长度限制&#xff0c;Llama 2 也翻了一倍。 在本文&#xff0c;我们将紧跟趋…...

微服务基础理论

微服务简介 微服务Microservices之父&#xff0c;马丁.福勒&#xff0c;对微服务大概的概述如下&#xff1a; 就目前而言&#xff0c;对于微服务业界并没有一个统一的、标准的定义&#xff08;While there is no precise definition of this architectural style ) 。但通在其…...

《向量数据库指南》:向量数据库Pinecone管理数据教程

目录 连接到索引 指定索引端点 调用whoami以检索您的项目名称。 描述索引统计信息 获取向量 更新向量 完整更新 ℹ️注意 部分更新 ⚠️注意 ℹ️注意 删除向量...

以深度为基础的Scikit-learn: 高级特性与最佳实践

Scikit-learn是一个广受欢迎的Python库&#xff0c;它用于解决许多机器学习的问题。在本篇文章中&#xff0c;我们将进一步探索Scikit-learn的高级特性和最佳实践。 一、管道机制 Scikit-learn的Pipeline类是一种方便的工具&#xff0c;它允许你将多个步骤&#xff08;如数据…...

Autosar MCAL-S32K324Dio配置-基于EB

文章目录 DioPost Build Variant UsedConfig VariantDioConfigDioPortDioChannelDioChannelGroupDioConfigDio Development Error DetectSIUL2 IP Dio Development Error DetectDio Version Info ApiDio Reverse Port BitsDio Flip Channel ApiDio Rea...

【Spring Boot】单元测试

单元测试 单元测试在日常项目开发中必不可少&#xff0c;Spring Boot提供了完善的单元测试框架和工具用于测试开发的应用。接下来介绍Spring Boot为单元测试提供了哪些支持&#xff0c;以及如何在Spring Boot项目中进行单元测试。 1.Spring Boot集成单元测试 单元测试主要用…...

Flink CEP (一)原理及概念

目录 1.Flink CEP 原理 2.Flink API开发 2.1 模式 pattern 2.2 模式 pattern属性 2.3 模式间的关系 1.Flink CEP 原理 Flink CEP内部是用NFA&#xff08;非确定有限自动机&#xff09;来实现的&#xff0c;由点和边组成的一个状态图&#xff0c;以一个初始状态作为起点&am…...

vue3+taro+Nutui 开发小程序(二)

上一篇我们初始化了小程序项目&#xff0c;这一篇我们来整理一下框架 首先可以看到我的项目整理框架是这样的&#xff1a; components:这里存放封装的组件 custom-tab-bar:这里存放自己封装的自定义tabbar interface&#xff1a;这里放置了Ts的一些基本泛型&#xff0c;不用…...

Transformer 模型实用介绍:BERT

动动发财的小手&#xff0c;点个赞吧&#xff01; 在 NLP 中&#xff0c;Transformer 模型架构是一场革命&#xff0c;极大地增强了理解和生成文本信息的能力。 在本教程[1]中&#xff0c;我们将深入研究 BERT&#xff08;一种著名的基于 Transformer 的模型&#xff09;&#…...

Spring详解(学习总结)

目录 一、Spring概述 &#xff08;一&#xff09;、Spring是什么&#xff1f; &#xff08;二&#xff09;、Spring框架发展历程 &#xff08;三&#xff09;、Spring框架的优势 &#xff08;四&#xff09;、Spring的体系结构 二、程序耦合与解耦合 &#xff08;一&…...

【JavaEE】Spring中注解的方式去获取Bean对象

【JavaEE】Spring的开发要点总结&#xff08;3&#xff09; 文章目录 【JavaEE】Spring的开发要点总结&#xff08;3&#xff09;1. 属性注入1.1 Autowired注解1.2 依赖查找 VS 依赖注入1.3 配合Qualifier 筛选Bean对象1.4 属性注入的优缺点 2. Setter注入2.1 Autowired注解2.2…...

【基于CentOS 7 的iscsi服务】

目录 一、概述 1.简述 2.作用 3. iscsi 4.相关名称 二、使用步骤 - 构建iscsi服务 1.使用targetcli工具进入到iscsi服务器端管理界面 2.实现步骤 2.1 服务器端 2.2 客户端 2.2.1 安装软件 2.2.2 在认证文件中生成iqn编号 2.2.3 开启客户端服务 2.2.4 查找可用的i…...

解决安装依赖时报错:npm ERR! code ERESOLVE

系列文章目录 文章目录 系列文章目录前言一、错误原因二、解决方法三、注意事项总结 前言 在使用 npm 安装项目依赖时&#xff0c;有时会遇到错误信息 “npm ERR! code ERESOLVE”&#xff0c;该错误通常发生在依赖版本冲突或者依赖解析问题时。本文将详细介绍出现这个错误的原…...

HTML 语义化

目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案&#xff1a; 语义化标签&#xff1a; <header>&#xff1a;页头<nav>&#xff1a;导航<main>&#xff1a;主要内容<article>&#x…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)

HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...

uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖

在前面的练习中&#xff0c;每个页面需要使用ref&#xff0c;onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入&#xff0c;需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...

聊聊 Pulsar:Producer 源码解析

一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台&#xff0c;以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中&#xff0c;Producer&#xff08;生产者&#xff09; 是连接客户端应用与消息队列的第一步。生产者…...

Opencv中的addweighted函数

一.addweighted函数作用 addweighted&#xff08;&#xff09;是OpenCV库中用于图像处理的函数&#xff0c;主要功能是将两个输入图像&#xff08;尺寸和类型相同&#xff09;按照指定的权重进行加权叠加&#xff08;图像融合&#xff09;&#xff0c;并添加一个标量值&#x…...

P3 QT项目----记事本(3.8)

3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...

Axios请求超时重发机制

Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式&#xff1a; 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...

Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理

引言 Bitmap&#xff08;位图&#xff09;是Android应用内存占用的“头号杀手”。一张1080P&#xff08;1920x1080&#xff09;的图片以ARGB_8888格式加载时&#xff0c;内存占用高达8MB&#xff08;192010804字节&#xff09;。据统计&#xff0c;超过60%的应用OOM崩溃与Bitm…...

Android第十三次面试总结(四大 组件基础)

Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成&#xff0c;用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机&#xff1a; ​onCreate()​​ ​调用时机​&#xff1a;Activity 首次创建时调用。​…...

html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码

目录 一、&#x1f468;‍&#x1f393;网站题目 二、✍️网站描述 三、&#x1f4da;网站介绍 四、&#x1f310;网站效果 五、&#x1fa93; 代码实现 &#x1f9f1;HTML 六、&#x1f947; 如何让学习不再盲目 七、&#x1f381;更多干货 一、&#x1f468;‍&#x1f…...