当前位置: 首页 > news >正文

以深度为基础的Scikit-learn: 高级特性与最佳实践

Scikit-learn是一个广受欢迎的Python库,它用于解决许多机器学习的问题。在本篇文章中,我们将进一步探索Scikit-learn的高级特性和最佳实践。

一、管道机制

Scikit-learn的Pipeline类是一种方便的工具,它允许你将多个步骤(如数据预处理和模型训练)封装在一个估计器中。这样可以确保我们的代码更整洁,而且能够保持训练和预测阶段的一致性。

下面的代码展示了如何使用Pipeline来封装预处理和模型训练步骤:

from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVCpipe = Pipeline([('scaler', StandardScaler()),('svm', SVC())
])pipe.fit(X_train, y_train)
predictions = pipe.predict(X_test)

二、自定义评估指标

Scikit-learn提供了一种创建自定义评估指标的方法,这对于某些特定的问题非常有用。例如,我们可以创建一个基于业务逻辑的复杂评估函数。

from sklearn.metrics import make_scorerdef custom_loss_func(y_true, y_pred):# Insert your own calculation herereturn loss_valuemy_scorer = make_scorer(custom_loss_func, greater_is_better=False)
grid_search = GridSearchCV(estimator, param_grid, scoring=my_scorer)

三、模型的保存和加载

在大型项目中,我们可能需要保存训练好的模型,并在稍后的时间或在不同的环境中重新加载。Scikit-learn使用了Python的内置模块pickle来实现模型的保存和加载。

from sklearn.externals import joblib# Save the model
joblib.dump(clf, 'model.pkl')# Load the model
clf = joblib.load('model.pkl')

四、使用FeatureUnion组合特征

有时候,我们可能希望对数据的不同子集应用不同的预处理步骤,然后将结果组合成一个特征集。Scikit-learn的FeatureUnion类提供了一种实现这个功能的方法。

from sklearn.pipeline import FeatureUnion
from sklearn.decomposition import PCA
from sklearn.decomposition import KernelPCAcombined_features = FeatureUnion([("pca", PCA(n_components=3)),("kernel_pca", KernelPCA(n_components=3)),
])X_features = combined_features.fit(X, y).transform(X)

Scikit-learn是一个非常强大的工具,通过深入了解它的高级特性和最佳实践,我们能更好地利用这个工具来解决更复杂的问题。

相关文章:

以深度为基础的Scikit-learn: 高级特性与最佳实践

Scikit-learn是一个广受欢迎的Python库,它用于解决许多机器学习的问题。在本篇文章中,我们将进一步探索Scikit-learn的高级特性和最佳实践。 一、管道机制 Scikit-learn的Pipeline类是一种方便的工具,它允许你将多个步骤(如数据…...

Autosar MCAL-S32K324Dio配置-基于EB

文章目录 DioPost Build Variant UsedConfig VariantDioConfigDioPortDioChannelDioChannelGroupDioConfigDio Development Error DetectSIUL2 IP Dio Development Error DetectDio Version Info ApiDio Reverse Port BitsDio Flip Channel ApiDio Rea...

【Spring Boot】单元测试

单元测试 单元测试在日常项目开发中必不可少,Spring Boot提供了完善的单元测试框架和工具用于测试开发的应用。接下来介绍Spring Boot为单元测试提供了哪些支持,以及如何在Spring Boot项目中进行单元测试。 1.Spring Boot集成单元测试 单元测试主要用…...

Flink CEP (一)原理及概念

目录 1.Flink CEP 原理 2.Flink API开发 2.1 模式 pattern 2.2 模式 pattern属性 2.3 模式间的关系 1.Flink CEP 原理 Flink CEP内部是用NFA(非确定有限自动机)来实现的,由点和边组成的一个状态图,以一个初始状态作为起点&am…...

vue3+taro+Nutui 开发小程序(二)

上一篇我们初始化了小程序项目,这一篇我们来整理一下框架 首先可以看到我的项目整理框架是这样的: components:这里存放封装的组件 custom-tab-bar:这里存放自己封装的自定义tabbar interface:这里放置了Ts的一些基本泛型,不用…...

Transformer 模型实用介绍:BERT

动动发财的小手,点个赞吧! 在 NLP 中,Transformer 模型架构是一场革命,极大地增强了理解和生成文本信息的能力。 在本教程[1]中,我们将深入研究 BERT(一种著名的基于 Transformer 的模型)&#…...

Spring详解(学习总结)

目录 一、Spring概述 (一)、Spring是什么? (二)、Spring框架发展历程 (三)、Spring框架的优势 (四)、Spring的体系结构 二、程序耦合与解耦合 (一&…...

【JavaEE】Spring中注解的方式去获取Bean对象

【JavaEE】Spring的开发要点总结(3) 文章目录 【JavaEE】Spring的开发要点总结(3)1. 属性注入1.1 Autowired注解1.2 依赖查找 VS 依赖注入1.3 配合Qualifier 筛选Bean对象1.4 属性注入的优缺点 2. Setter注入2.1 Autowired注解2.2…...

【基于CentOS 7 的iscsi服务】

目录 一、概述 1.简述 2.作用 3. iscsi 4.相关名称 二、使用步骤 - 构建iscsi服务 1.使用targetcli工具进入到iscsi服务器端管理界面 2.实现步骤 2.1 服务器端 2.2 客户端 2.2.1 安装软件 2.2.2 在认证文件中生成iqn编号 2.2.3 开启客户端服务 2.2.4 查找可用的i…...

解决安装依赖时报错:npm ERR! code ERESOLVE

系列文章目录 文章目录 系列文章目录前言一、错误原因二、解决方法三、注意事项总结 前言 在使用 npm 安装项目依赖时,有时会遇到错误信息 “npm ERR! code ERESOLVE”,该错误通常发生在依赖版本冲突或者依赖解析问题时。本文将详细介绍出现这个错误的原…...

98、简述Kafka的rebalance机制

简述Kafka的rebalance机制 consumer group中的消费者与topic下的partion重新匹配的过程 何时会产生rebalance: consumer group中的成员个数发生变化consumer 消费超时group订阅的topic个数发生变化group订阅的topic的分区数发生变化 coordinator: 通常是partition的leader节…...

【人工智能】监督学习、分类问题、决策树、信息增益

文章目录 Decision Trees 决策树建立决策树分类模型的流程如何建立决策树?决策树学习表达能力决策树学习信息论在决策树学习中的应用特征选择准则一:信息增益举例结论不足回到餐厅的例子从12个例子中学到的决策树:Decision Trees 决策树 什么是决策树 —— 基本概念 非叶节…...

Pytorch迁移学习使用Resnet50进行模型训练预测猫狗二分类

目录 1.ResNet残差网络 1.1 ResNet定义 1.2 ResNet 几种网络配置 1.3 ResNet50网络结构 1.3.1 前几层卷积和池化 1.3.2 残差块:构建深度残差网络 1.3.3 ResNet主体:堆叠多个残差块 1.4 迁移学习猫狗二分类实战 1.4.1 迁移学习 1.4.2 模型训练 1.…...

HTML与XHTML的不同和各自特点

HTML和XHTML都是用于创建Web页面的标记语言。HTML是一种被广泛使用的标记语言,而XHTML是HTML的严格规范化版本。在本文中,我们将探讨HTML与XHTML之间的不同之处,以及它们各自的特点。 HTML与XHTML的不同之处 HTML和XHTML之间最大的不同在于它…...

微服务如何治理

微服务远程调用可能有如下问题: 注册中心宕机; 服务提供者B有节点宕机; 服务消费者A和注册中心之间的网络不通; 服务提供者B和注册中心之间的网络不通; 服务消费者A和服务提供者B之间的网络不通; 服务提供者…...

一本通1919:【02NOIP普及组】选数

这道题感觉很好玩。 正文: 先放题目: 信息学奥赛一本通(C版)在线评测系统 (ssoier.cn)http://ybt.ssoier.cn:8088/problem_show.php?pid1919 描述 已知 n 个整数 x1,x2,…,xn,以及一个整数 k(k&#…...

Kubernetes 集群管理和编排

文章目录 总纲第一章:引入 Kubernetes什么是容器编排和管理?容器编排和管理的重要性Kubernetes作为容器编排和管理解决方案 Kubernetes 的背景和发展起源和发展历程Kubernetes 项目的目标和动机 Kubernetes 的作用和优势作用优势 Kubernetes 的特点和核心…...

DDS协议--[第六章][Discovery]

DDS协议–Discovery 文章目录 DDS协议--Discovery侦听通告DDS提供发现协议参与者发现阶段(PDP)端点发现阶段(EDP)Fast DDS提供如下四种发现机制:简单发现机制简单发现机制步骤:侦听 侦听定位器用于接收DomainParticipant上的传入流量,是DDS发现机制和数据传输机制的关键…...

如何设置iptables,让网络流量转发给内部容器mysql

1.创建一个mysql ,无法外部访问 docker run -d --name mysql_container -e MYSQL_ROOT_PASSWORDliuyunshengsir -v /path/to/mysql_data:/var/lib/mysql mysql2.设置规则外部直接可访问 要使用 iptables 将网络流量转发给内部容器中的 MySQL 服务,你可…...

数字IC实践项目(7)—CNN加速器的设计和实现(付费项目)

数字IC实践项目(7)—基于Verilog的CNN加速器(付费项目) 写在前面的话项目整体框图神经网络框图完整电路框图 项目简介和学习目的软件环境要求 资源占用&板载功耗总结 写在前面的话 项目介绍: 卷积神经网络硬件加速…...

IDEA运行Tomcat出现乱码问题解决汇总

最近正值期末周,有很多同学在写期末Java web作业时,运行tomcat出现乱码问题,经过多次解决与研究,我做了如下整理: 原因: IDEA本身编码与tomcat的编码与Windows编码不同导致,Windows 系统控制台…...

高等数学(下)题型笔记(八)空间解析几何与向量代数

目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...

Linux云原生安全:零信任架构与机密计算

Linux云原生安全:零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言:云原生安全的范式革命 随着云原生技术的普及,安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测,到2025年,零信任架构将成为超…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)

在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...

【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)

1.获取 authorizationCode: 2.利用 authorizationCode 获取 accessToken:文档中心 3.获取手机:文档中心 4.获取昵称头像:文档中心 首先创建 request 若要获取手机号,scope必填 phone,permissions 必填 …...

Device Mapper 机制

Device Mapper 机制详解 Device Mapper(简称 DM)是 Linux 内核中的一套通用块设备映射框架,为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程,并配以详细的…...

九天毕昇深度学习平台 | 如何安装库?

pip install 库名 -i https://pypi.tuna.tsinghua.edu.cn/simple --user 举个例子: 报错 ModuleNotFoundError: No module named torch 那么我需要安装 torch pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple --user pip install 库名&#x…...

HashMap中的put方法执行流程(流程图)

1 put操作整体流程 HashMap 的 put 操作是其最核心的功能之一。在 JDK 1.8 及以后版本中,其主要逻辑封装在 putVal 这个内部方法中。整个过程大致如下: 初始判断与哈希计算: 首先,putVal 方法会检查当前的 table(也就…...

JS设计模式(4):观察者模式

JS设计模式(4):观察者模式 一、引入 在开发中,我们经常会遇到这样的场景:一个对象的状态变化需要自动通知其他对象,比如: 电商平台中,商品库存变化时需要通知所有订阅该商品的用户;新闻网站中&#xff0…...

VM虚拟机网络配置(ubuntu24桥接模式):配置静态IP

编辑-虚拟网络编辑器-更改设置 选择桥接模式,然后找到相应的网卡(可以查看自己本机的网络连接) windows连接的网络点击查看属性 编辑虚拟机设置更改网络配置,选择刚才配置的桥接模式 静态ip设置: 我用的ubuntu24桌…...