当前位置: 首页 > news >正文

OpenCV系列__chapter2

这里写目录标题

    • 1 图像加减乘除位运算
      • 1.1 加法 img = cv2.add(img1, img2)
      • 1.2 减法 img = cv2.subtract(img1, img2)
      • 1.3 乘法 img = cv2.multiply(img1, img2)
      • 1.4 除法 img = cv2.divide(img1, img2)
      • 1.5 位运算 cv2.bitwise_and()
    • 2 图像增强
      • 2.1 线性变换
      • 2.2 非线性变换
    • 3 图像几何变换
      • 3.1 裁剪、放大、缩小
      • 3.2 平移变换
      • 3.3 错切变换
      • 3.4 镜像变换
      • 3.5 旋转变换
      • 3.6 透视变换
      • 3.7 最近邻插值、双线性插值

1 图像加减乘除位运算

1.1 加法 img = cv2.add(img1, img2)

import cv2
import numpy as np
import matplotlib.pyplot as pltlena = cv2.imread('lenacolor.png',-1)
noise = np.random.randint(0,255,lena.shape,dtype=np.uint8)
img_add = lena+noise
img_cv_add = cv2.add(lena,noise)plt.subplot(221)
plt.title('lena')
plt.imshow(lena[...,::-1])
plt.subplot(222)
plt.title('noise')
plt.imshow(noise[...,::-1])
plt.subplot(223)
plt.title('img_add')
plt.imshow(img_add[...,::-1])
plt.subplot(224)
plt.title('img_cv_add')
plt.imshow(img_cv_add[...,::-1])
plt.show()

在这里插入图片描述

1.2 减法 img = cv2.subtract(img1, img2)

import cv2
import numpy as np
import matplotlib.pyplot as pltimg_0 = cv2.imread('34.jpeg',-1)
img_1 = cv2.imread('35.jpeg',-1)
img_sub = cv2.subtract(img_0, img_1)plt.subplot(131)
plt.title('img_0')
plt.imshow(img_0[...,::-1])
plt.subplot(132)
plt.title('img_1')
plt.imshow(img_1[...,::-1])
plt.subplot(133)
plt.title('img_sub')
plt.imshow(img_sub[...,::-1])
plt.show()

在这里插入图片描述

import cv2
import numpy as np
import matplotlib.pyplot as pltimg_0 = cv2.imread('img_no.png',0)
img_1 = cv2.imread('sub.png',0)
img_sub = cv2.subtract(img_0, img_1)plt.subplot(131)
plt.title('img_0')
plt.imshow(img_0,cmap='gray')
plt.subplot(132)
plt.title('img_1')
plt.imshow(img_1,cmap='gray')
plt.subplot(133)
plt.title('img_sub')
plt.imshow(img_sub,cmap='gray')
plt.show()

在这里插入图片描述

1.3 乘法 img = cv2.multiply(img1, img2)

import cv2
import numpy as np
import matplotlib.pyplot as pltlena = cv2.imread('lenacolor.png',-1)
mask = np.zeros_like(lena,np.uint8)
mask[204:392,213:354] = 1
img_mul = cv2.multiply(lena, mask)plt.subplot(131)
plt.title('lena')
plt.imshow(lena[...,::-1])
plt.subplot(132)
plt.title('mask')
plt.imshow(mask[...,::-1])
plt.subplot(133)
plt.title('img_mul')
plt.imshow(img_mul[...,::-1])
plt.show()

在这里插入图片描述

1.4 除法 img = cv2.divide(img1, img2)

import cv2
import numpy as np
import matplotlib.pyplot as pltlena = cv2.imread('lenacolor.png',0)
img_noise = cv2.circle(lena.copy(),(280,300),150,(0,255,0),10)
img_div = cv2.divide(img_noise,lena)plt.subplot(131)
plt.title('lena')
plt.imshow(lena,cmap='gray')
plt.subplot(132)
plt.title('img_noise')
plt.imshow(img_noise,cmap='gray')
plt.subplot(133)
plt.title('img_div')
plt.imshow(img_div,cmap='gray')
plt.show()

在这里插入图片描述

1.5 位运算 cv2.bitwise_and()

import cv2
import numpy as np
import matplotlib.pyplot as pltlena = cv2.imread('lenacolor.png',1)
mask = np.zeros_like(lena,dtype=np.uint8)
mask = cv2.circle(mask,(280,280),111,(255,255,255),-1)
re = cv2.bitwise_and(lena,mask)plt.subplot(131)
plt.title('lena')
plt.imshow(lena[...,::-1])
plt.subplot(132)
plt.title('mask')
plt.imshow(mask[...,::-1])
plt.subplot(133)
plt.title('re')
plt.imshow(re[...,::-1])
plt.show()

在这里插入图片描述

import cv2
import numpy as np
import matplotlib.pyplot as pltlena = cv2.imread('lenacolor.png',1)
mask = np.zeros(lena.shape[:2],dtype=np.uint8)
mask = cv2.circle(mask,(280,280),111,(255,255,255),-1)
re = cv2.bitwise_and(lena,lena,mask=mask)plt.subplot(131)
plt.title('lena')
plt.imshow(lena[...,::-1])
plt.subplot(132)
plt.title('mask')
plt.imshow(mask,'gray')
plt.subplot(133)
plt.title('re')
plt.imshow(re[...,::-1])
plt.show()

在这里插入图片描述

2 图像增强

2.1 线性变换

import cv2
import numpy as np
import matplotlib.pyplot as pltimg = cv2.imread('lianhua.png',1)
re = img*2+10
re = re.astype(np.uint8)
re1 = cv2.convertScaleAbs(img, alpha=2, beta=10)plt.subplot(131)
plt.title('img')
plt.imshow(img[...,::-1])
plt.subplot(132)
plt.title('re0')
plt.imshow(re0[...,::-1])
plt.subplot(133)
plt.title('re1')
plt.imshow(re1[...,::-1])
plt.show()

在这里插入图片描述

2.2 非线性变换

import cv2
import numpy as np
import matplotlib.pyplot as plt## 1 gamma
def gamma_aug(img,c,gamma):gamma_table=[c*np.power(x/255.0,gamma)*255.0 for x in range(256)]gamma_table=np.round(np.array(gamma_table)).astype(np.uint8)return cv2.LUT(img,gamma_table)## 2 log
def log_aug(img,c,r):gamma_table=[c*np.log10(1+x/255.0*r)*255.0 for x in range(256)]gamma_table=np.round(np.array(gamma_table)).astype(np.uint8)return cv2.LUT(img,gamma_table)if __name__ == '__main__':img = cv2.imread('lianhua.png',1)img11 =  gamma_aug(img,c=1,gamma=0.1)img12 = gamma_aug(img, c=1, gamma=0.8)img21 = log_aug(img, c=1, r=10)img22 = log_aug(img, c=2, r=10)plt.subplot(231)plt.title('img')plt.imshow(img[...,::-1])plt.subplot(232)plt.title('img11')plt.imshow(img11[..., ::-1])plt.subplot(233)plt.title('img12')plt.imshow(img12[..., ::-1])plt.subplot(234)plt.title('img')plt.imshow(img[...,::-1])plt.subplot(235)plt.title('img21')plt.imshow(img21[..., ::-1])plt.subplot(236)plt.title('img22')plt.imshow(img22[..., ::-1])plt.show()

在这里插入图片描述

3 图像几何变换

3.1 裁剪、放大、缩小


3.2 平移变换


3.3 错切变换


3.4 镜像变换


3.5 旋转变换


3.6 透视变换


3.7 最近邻插值、双线性插值


相关文章:

OpenCV系列__chapter2

这里写目录标题 1 图像加减乘除位运算1.1 加法 img cv2.add(img1, img2)1.2 减法 img cv2.subtract(img1, img2)1.3 乘法 img cv2.multiply(img1, img2)1.4 除法 img cv2.divide(img1, img2)1.5 位运算 cv2.bitwise_and() 2 图像增强2.1 线性变换2.2 非线性变换 3 图像几何…...

Chat GPT是什么,初学者怎么使用Chat GPT,需要注意些什么

目录 Chat GPT是什么 初学者怎么使用Chat GPT 使用Chat GPT需要注意什么 一些简单的prompt示例 Chat GPT是什么 Chat GPT是由OpenAI开发的一种大型语言模型,它基于GPT(Generative Pre-trained Transformer)架构。GPT是一种基于深度学习的…...

hcip mgre与rip实验

要求: 1.toop搭建 2.IP地址规划 R1g 0/0/1 192.168.1.1 24 s 4/0/0 188.0.0.2 24 t:10.0.0.1 24R2 s 4/0/0 188.0.0.1 24 s 4/0/1 188.0.1.1 24 s 3/0/0 188.0.2.1 24 loop0 8.8.8.8 24 t:10.0.0.2 24 R3g…...

骨传导耳机对身体有没有别的危害?骨传导耳机有什么好处?

骨传导耳机对身体有没有别的危害? 在此之前,我们先了解一下骨传导的原理:骨传导就跟它的名字一样通过骨头传声,主要是借助头部颅骨传递到听觉中枢,这种传播方式省略了直接接触耳道和耳膜。打个比方,就是我们…...

c++11/c++98动态规划入门第5课,经典DP问题 --- 区间

第1题 取数问题 查看测评数据信息 有一排N个数,你和小明2个人玩游戏,每个人轮流从2端取数,每次可以从左或右取,不能从中间取。你取的所有的数的和是你的得分,小明取的所有的数的和是小明的得分。如果你先取&#x…...

vue中重新获取数据导致页面加长,要求在页面更新之后浏览器滚动条滚动到之前浏览记录的位置。以及获取当前页面中是哪个元素产生滚动条的方法。

目前的页面样式为&#xff1a; 代码是&#xff1a; <section id"detailSection"><el-tableref"multipleTable":data"logDetailList"style"width: 650px;margin:20px auto;"id"dialogDetail":show-header"fals…...

【深度学习】日常笔记14

对神经网络模型参数的初始化方案对保持数值稳定性有很重要的作用。初始化⽅案的选择可以与⾮线性激活函数的选择有趣的结合在⼀起。 突然有感触&#xff1a;做习题和模拟考研就分别是训练集和验证集&#xff0c;考研不就是最后的测试集&#xff08;&#xff09; p168的↓的解释…...

[JAVAee]synchronized关键字

目录 1.synchronized的特性 ①互斥性 ②可重入性 2.synchronized的使用示例 ①修饰普通方法 ②修饰静态方法 ③修饰代码块 1.synchronized的特性 ①互斥性 互斥性,就像是给门上锁了一样. 当A线程使用了被synchronized修饰的代码块并对其上锁,其他线程(B线程,C线程)想要使…...

Unity游戏源码分享-3d机器人推箱子游戏

Unity游戏源码分享-3d机器人推箱子游戏 一个非常意思的3D游戏 工程地址&#xff1a;https://download.csdn.net/download/Highning0007/88098014...

SAAS部署模式

SAAS&#xff08;Software as a Service&#xff09;顾名思义&#xff0c;软件即服务的产品。 常见部署模式&#xff1a; 公有云&#xff1a;SAAS产品部署在公有云平台上&#xff0c;由SAAS提供商管理整个基础架构和应用程序。客户通过互联网访问和使用SAAS产品&#xff0c;无…...

11、PHP面向对象1

1、PHP的面向对象与其他语言类似&#xff0c;但也有不同。 PHP访问成员变量时&#xff0c;需要用“->”&#xff0c;而不能用“.”&#xff0c;访问成员函数时&#xff0c;需要用“->”&#xff0c;而不能用“.”。操作符“::”可以在没有任何声明实例的情况下访问类中的…...

实训笔记7.25

实训笔记7.25 7.25笔记一、MapReduce的特殊使用场景1.1 通过MapReduce程序实现多文件Join操作1.1.1 通过在Reduce端实现join操作1.1.2 通过在Map端实现join操作 1.2 MapReduce中的计数器的使用1.2.1 计数器使用两种方式 1.3 MapReduce实现数据清洗 二、MapReduce的OutputFormat…...

全方位对比 Postgres 和 MongoDB (2023 版)

本文为「数据库全方位对比系列」第二篇&#xff0c;该系列的首部作品为「全方位对比 Postgres 和 MySQL (2023 版)」 为何对比 Postgres 和 MongoDB 根据 2023 年 Stack Overflow 调研&#xff0c;Postgres 已经成为最受欢迎和渴望的数据库了。 MongoDB 曾连续 4 年 (2017 - …...

本地部署中文LLaMA模型实战教程,民间羊驼模型

羊驼实战系列索引 博文1:本地部署中文LLaMA模型实战教程,民间羊驼模型(本博客) 博文2:本地训练中文LLaMA模型实战教程,民间羊驼模型 博文3:精调训练中文LLaMA模型实战教程,民间羊驼模型 简介 LLaMA大部分是英文语料训练的,讲中文能力很弱。如果我们想微调训练自己的…...

全志F1C200S嵌入式驱动开发(spi-nor image制作)

【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】 一般soc系统里面添加spi-nor flash芯片,特别是对linux soc来说,都是把它当成文件系统来使用的。spi-nor flash和spi-nand flash相比,虽然空间小了点,但是胜在稳定,这是很多工业…...

JSON格式Python,Java,PHP等封装图片识别商品数据API方法

淘宝是一个网上购物平台&#xff0c;售卖各类商品&#xff0c;包括服装、鞋类、家居用品、美妆产品、电子产品等。要获取淘宝天猫图片识别商品数据&#xff0c;您可以通过开放平台的接口或者直接访问淘宝天猫商城的网页来获取图片识别商品数据。以下是两种常用方法的介绍&#…...

Vue应用案例

项目一&#xff1a;记事本 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8" /><title>title</title></head> <body><div id"app"><h2 >记事本</h2><input …...

GPT-3.5:ChatGPT的奇妙之处和革命性进步

&#x1f337;&#x1f341; 博主 libin9iOak带您 Go to New World.✨&#x1f341; &#x1f984; 个人主页——libin9iOak的博客&#x1f390; &#x1f433; 《面试题大全》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33…...

【Hadoop 01】简介

目录 1 Hadoop 简介 2 下载并配置Hadoop 2.1 修改/etc/profile 2.2 修改hadoop-env.sh 2.3 修改core-site.xml 2.4 修改hdfs-site.xml 2.5 修改mapred-site.xml 2.6 修改yarn-site.xml 2.7 修改workers 2.8 修改start-dfs.sh、stop-dfs.sh 2.9 修改start-yarn.sh、s…...

【C++】开源:跨平台轻量日志库easyloggingpp

&#x1f60f;★,:.☆(&#xffe3;▽&#xffe3;)/$:.★ &#x1f60f; 这篇文章主要介绍跨平台轻量日志库easyloggingpp。 无专精则不能成&#xff0c;无涉猎则不能通。。——梁启超 欢迎来到我的博客&#xff0c;一起学习&#xff0c;共同进步。 喜欢的朋友可以关注一下&am…...

相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解

【关注我&#xff0c;后续持续新增专题博文&#xff0c;谢谢&#xff01;&#xff01;&#xff01;】 上一篇我们讲了&#xff1a; 这一篇我们开始讲&#xff1a; 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下&#xff1a; 一、场景操作步骤 操作步…...

LeetCode - 199. 二叉树的右视图

题目 199. 二叉树的右视图 - 力扣&#xff08;LeetCode&#xff09; 思路 右视图是指从树的右侧看&#xff0c;对于每一层&#xff0c;只能看到该层最右边的节点。实现思路是&#xff1a; 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...

职坐标物联网全栈开发全流程解析

物联网全栈开发涵盖从物理设备到上层应用的完整技术链路&#xff0c;其核心流程可归纳为四大模块&#xff1a;感知层数据采集、网络层协议交互、平台层资源管理及应用层功能实现。每个模块的技术选型与实现方式直接影响系统性能与扩展性&#xff0c;例如传感器选型需平衡精度与…...

【Redis】Redis从入门到实战:全面指南

Redis从入门到实战:全面指南 一、Redis简介 Redis(Remote Dictionary Server)是一个开源的、基于内存的键值存储系统,它可以用作数据库、缓存和消息代理。由Salvatore Sanfilippo于2009年开发,因其高性能、丰富的数据结构和广泛的语言支持而广受欢迎。 Redis核心特点:…...

从0开始学习R语言--Day17--Cox回归

Cox回归 在用医疗数据作分析时&#xff0c;最常见的是去预测某类病的患者的死亡率或预测他们的结局。但是我们得到的病人数据&#xff0c;往往会有很多的协变量&#xff0c;即使我们通过计算来减少指标对结果的影响&#xff0c;我们的数据中依然会有很多的协变量&#xff0c;且…...

PCA笔记

✅ 问题本质&#xff1a;为什么让矩阵 TT 的行列式为 1&#xff1f; 这个问题通常出现在我们对数据做**线性变换&#xff08;旋转/缩放&#xff09;**的时候&#xff0c;比如在 PCA 中把数据从原始坐标系变换到主成分方向时。 &#x1f4cc; 回顾一下背景 在 PCA 中&#xff…...

项目研究:使用 LangGraph 构建智能客服代理

概述 本教程展示了如何使用 LangGraph 构建一个智能客服代理。LangGraph 是一个强大的工具&#xff0c;可用于构建复杂的语言模型工作流。该代理可以自动分类用户问题、分析情绪&#xff0c;并根据需要生成回应或升级处理。 背景动机 在当今节奏飞快的商业环境中&#xff0c…...

FTPS、HTTPS、SMTPS以及WebSockets over TLS的概念及其应用场景

一、什么是FTPS&#xff1f; FTPS&#xff0c;英文全称File Transfer Protocol with support for Transport Layer Security (SSL/TLS)&#xff0c;安全文件传输协议&#xff0c;是一种对常用的文件传输协议(FTP)添加传输层安全(TLS)和安全套接层(SSL)加密协议支持的扩展协议。…...

C++ 使用 ffmpeg 解码 rtsp 流并获取每帧的YUV数据

一、简介 FFmpeg 是一个‌开源的多媒体处理框架‌&#xff0c;非常适用于处理音视频的录制、转换、流化和播放。 二、代码 示例代码使用工作线程读取rtsp视频流&#xff0c;自动重连&#xff0c;支持手动退出&#xff0c;解码并将二进制文件保存下来。 注意&#xff1a; 代…...

CCF 开源发展委员会 “开源高校行“ 暨红山开源 + OpenAtom openKylin 高校行活动在西安四所高校成功举办

点击蓝字 关注我们 CCF Opensource Development Committee CCF开源高校行 暨红山开源 openKylin 高校行 西安站 5 月 26 日至 28 日&#xff0c;CCF 开源发展委员会 "开源高校行" 暨红山开源 OpenAtom openKylin 高校行活动在西安四所高校&#xff08;西安交通大学…...