当前位置: 首页 > news >正文

OpenCV系列__chapter2

这里写目录标题

    • 1 图像加减乘除位运算
      • 1.1 加法 img = cv2.add(img1, img2)
      • 1.2 减法 img = cv2.subtract(img1, img2)
      • 1.3 乘法 img = cv2.multiply(img1, img2)
      • 1.4 除法 img = cv2.divide(img1, img2)
      • 1.5 位运算 cv2.bitwise_and()
    • 2 图像增强
      • 2.1 线性变换
      • 2.2 非线性变换
    • 3 图像几何变换
      • 3.1 裁剪、放大、缩小
      • 3.2 平移变换
      • 3.3 错切变换
      • 3.4 镜像变换
      • 3.5 旋转变换
      • 3.6 透视变换
      • 3.7 最近邻插值、双线性插值

1 图像加减乘除位运算

1.1 加法 img = cv2.add(img1, img2)

import cv2
import numpy as np
import matplotlib.pyplot as pltlena = cv2.imread('lenacolor.png',-1)
noise = np.random.randint(0,255,lena.shape,dtype=np.uint8)
img_add = lena+noise
img_cv_add = cv2.add(lena,noise)plt.subplot(221)
plt.title('lena')
plt.imshow(lena[...,::-1])
plt.subplot(222)
plt.title('noise')
plt.imshow(noise[...,::-1])
plt.subplot(223)
plt.title('img_add')
plt.imshow(img_add[...,::-1])
plt.subplot(224)
plt.title('img_cv_add')
plt.imshow(img_cv_add[...,::-1])
plt.show()

在这里插入图片描述

1.2 减法 img = cv2.subtract(img1, img2)

import cv2
import numpy as np
import matplotlib.pyplot as pltimg_0 = cv2.imread('34.jpeg',-1)
img_1 = cv2.imread('35.jpeg',-1)
img_sub = cv2.subtract(img_0, img_1)plt.subplot(131)
plt.title('img_0')
plt.imshow(img_0[...,::-1])
plt.subplot(132)
plt.title('img_1')
plt.imshow(img_1[...,::-1])
plt.subplot(133)
plt.title('img_sub')
plt.imshow(img_sub[...,::-1])
plt.show()

在这里插入图片描述

import cv2
import numpy as np
import matplotlib.pyplot as pltimg_0 = cv2.imread('img_no.png',0)
img_1 = cv2.imread('sub.png',0)
img_sub = cv2.subtract(img_0, img_1)plt.subplot(131)
plt.title('img_0')
plt.imshow(img_0,cmap='gray')
plt.subplot(132)
plt.title('img_1')
plt.imshow(img_1,cmap='gray')
plt.subplot(133)
plt.title('img_sub')
plt.imshow(img_sub,cmap='gray')
plt.show()

在这里插入图片描述

1.3 乘法 img = cv2.multiply(img1, img2)

import cv2
import numpy as np
import matplotlib.pyplot as pltlena = cv2.imread('lenacolor.png',-1)
mask = np.zeros_like(lena,np.uint8)
mask[204:392,213:354] = 1
img_mul = cv2.multiply(lena, mask)plt.subplot(131)
plt.title('lena')
plt.imshow(lena[...,::-1])
plt.subplot(132)
plt.title('mask')
plt.imshow(mask[...,::-1])
plt.subplot(133)
plt.title('img_mul')
plt.imshow(img_mul[...,::-1])
plt.show()

在这里插入图片描述

1.4 除法 img = cv2.divide(img1, img2)

import cv2
import numpy as np
import matplotlib.pyplot as pltlena = cv2.imread('lenacolor.png',0)
img_noise = cv2.circle(lena.copy(),(280,300),150,(0,255,0),10)
img_div = cv2.divide(img_noise,lena)plt.subplot(131)
plt.title('lena')
plt.imshow(lena,cmap='gray')
plt.subplot(132)
plt.title('img_noise')
plt.imshow(img_noise,cmap='gray')
plt.subplot(133)
plt.title('img_div')
plt.imshow(img_div,cmap='gray')
plt.show()

在这里插入图片描述

1.5 位运算 cv2.bitwise_and()

import cv2
import numpy as np
import matplotlib.pyplot as pltlena = cv2.imread('lenacolor.png',1)
mask = np.zeros_like(lena,dtype=np.uint8)
mask = cv2.circle(mask,(280,280),111,(255,255,255),-1)
re = cv2.bitwise_and(lena,mask)plt.subplot(131)
plt.title('lena')
plt.imshow(lena[...,::-1])
plt.subplot(132)
plt.title('mask')
plt.imshow(mask[...,::-1])
plt.subplot(133)
plt.title('re')
plt.imshow(re[...,::-1])
plt.show()

在这里插入图片描述

import cv2
import numpy as np
import matplotlib.pyplot as pltlena = cv2.imread('lenacolor.png',1)
mask = np.zeros(lena.shape[:2],dtype=np.uint8)
mask = cv2.circle(mask,(280,280),111,(255,255,255),-1)
re = cv2.bitwise_and(lena,lena,mask=mask)plt.subplot(131)
plt.title('lena')
plt.imshow(lena[...,::-1])
plt.subplot(132)
plt.title('mask')
plt.imshow(mask,'gray')
plt.subplot(133)
plt.title('re')
plt.imshow(re[...,::-1])
plt.show()

在这里插入图片描述

2 图像增强

2.1 线性变换

import cv2
import numpy as np
import matplotlib.pyplot as pltimg = cv2.imread('lianhua.png',1)
re = img*2+10
re = re.astype(np.uint8)
re1 = cv2.convertScaleAbs(img, alpha=2, beta=10)plt.subplot(131)
plt.title('img')
plt.imshow(img[...,::-1])
plt.subplot(132)
plt.title('re0')
plt.imshow(re0[...,::-1])
plt.subplot(133)
plt.title('re1')
plt.imshow(re1[...,::-1])
plt.show()

在这里插入图片描述

2.2 非线性变换

import cv2
import numpy as np
import matplotlib.pyplot as plt## 1 gamma
def gamma_aug(img,c,gamma):gamma_table=[c*np.power(x/255.0,gamma)*255.0 for x in range(256)]gamma_table=np.round(np.array(gamma_table)).astype(np.uint8)return cv2.LUT(img,gamma_table)## 2 log
def log_aug(img,c,r):gamma_table=[c*np.log10(1+x/255.0*r)*255.0 for x in range(256)]gamma_table=np.round(np.array(gamma_table)).astype(np.uint8)return cv2.LUT(img,gamma_table)if __name__ == '__main__':img = cv2.imread('lianhua.png',1)img11 =  gamma_aug(img,c=1,gamma=0.1)img12 = gamma_aug(img, c=1, gamma=0.8)img21 = log_aug(img, c=1, r=10)img22 = log_aug(img, c=2, r=10)plt.subplot(231)plt.title('img')plt.imshow(img[...,::-1])plt.subplot(232)plt.title('img11')plt.imshow(img11[..., ::-1])plt.subplot(233)plt.title('img12')plt.imshow(img12[..., ::-1])plt.subplot(234)plt.title('img')plt.imshow(img[...,::-1])plt.subplot(235)plt.title('img21')plt.imshow(img21[..., ::-1])plt.subplot(236)plt.title('img22')plt.imshow(img22[..., ::-1])plt.show()

在这里插入图片描述

3 图像几何变换

3.1 裁剪、放大、缩小


3.2 平移变换


3.3 错切变换


3.4 镜像变换


3.5 旋转变换


3.6 透视变换


3.7 最近邻插值、双线性插值


相关文章:

OpenCV系列__chapter2

这里写目录标题 1 图像加减乘除位运算1.1 加法 img cv2.add(img1, img2)1.2 减法 img cv2.subtract(img1, img2)1.3 乘法 img cv2.multiply(img1, img2)1.4 除法 img cv2.divide(img1, img2)1.5 位运算 cv2.bitwise_and() 2 图像增强2.1 线性变换2.2 非线性变换 3 图像几何…...

Chat GPT是什么,初学者怎么使用Chat GPT,需要注意些什么

目录 Chat GPT是什么 初学者怎么使用Chat GPT 使用Chat GPT需要注意什么 一些简单的prompt示例 Chat GPT是什么 Chat GPT是由OpenAI开发的一种大型语言模型,它基于GPT(Generative Pre-trained Transformer)架构。GPT是一种基于深度学习的…...

hcip mgre与rip实验

要求: 1.toop搭建 2.IP地址规划 R1g 0/0/1 192.168.1.1 24 s 4/0/0 188.0.0.2 24 t:10.0.0.1 24R2 s 4/0/0 188.0.0.1 24 s 4/0/1 188.0.1.1 24 s 3/0/0 188.0.2.1 24 loop0 8.8.8.8 24 t:10.0.0.2 24 R3g…...

骨传导耳机对身体有没有别的危害?骨传导耳机有什么好处?

骨传导耳机对身体有没有别的危害? 在此之前,我们先了解一下骨传导的原理:骨传导就跟它的名字一样通过骨头传声,主要是借助头部颅骨传递到听觉中枢,这种传播方式省略了直接接触耳道和耳膜。打个比方,就是我们…...

c++11/c++98动态规划入门第5课,经典DP问题 --- 区间

第1题 取数问题 查看测评数据信息 有一排N个数,你和小明2个人玩游戏,每个人轮流从2端取数,每次可以从左或右取,不能从中间取。你取的所有的数的和是你的得分,小明取的所有的数的和是小明的得分。如果你先取&#x…...

vue中重新获取数据导致页面加长,要求在页面更新之后浏览器滚动条滚动到之前浏览记录的位置。以及获取当前页面中是哪个元素产生滚动条的方法。

目前的页面样式为&#xff1a; 代码是&#xff1a; <section id"detailSection"><el-tableref"multipleTable":data"logDetailList"style"width: 650px;margin:20px auto;"id"dialogDetail":show-header"fals…...

【深度学习】日常笔记14

对神经网络模型参数的初始化方案对保持数值稳定性有很重要的作用。初始化⽅案的选择可以与⾮线性激活函数的选择有趣的结合在⼀起。 突然有感触&#xff1a;做习题和模拟考研就分别是训练集和验证集&#xff0c;考研不就是最后的测试集&#xff08;&#xff09; p168的↓的解释…...

[JAVAee]synchronized关键字

目录 1.synchronized的特性 ①互斥性 ②可重入性 2.synchronized的使用示例 ①修饰普通方法 ②修饰静态方法 ③修饰代码块 1.synchronized的特性 ①互斥性 互斥性,就像是给门上锁了一样. 当A线程使用了被synchronized修饰的代码块并对其上锁,其他线程(B线程,C线程)想要使…...

Unity游戏源码分享-3d机器人推箱子游戏

Unity游戏源码分享-3d机器人推箱子游戏 一个非常意思的3D游戏 工程地址&#xff1a;https://download.csdn.net/download/Highning0007/88098014...

SAAS部署模式

SAAS&#xff08;Software as a Service&#xff09;顾名思义&#xff0c;软件即服务的产品。 常见部署模式&#xff1a; 公有云&#xff1a;SAAS产品部署在公有云平台上&#xff0c;由SAAS提供商管理整个基础架构和应用程序。客户通过互联网访问和使用SAAS产品&#xff0c;无…...

11、PHP面向对象1

1、PHP的面向对象与其他语言类似&#xff0c;但也有不同。 PHP访问成员变量时&#xff0c;需要用“->”&#xff0c;而不能用“.”&#xff0c;访问成员函数时&#xff0c;需要用“->”&#xff0c;而不能用“.”。操作符“::”可以在没有任何声明实例的情况下访问类中的…...

实训笔记7.25

实训笔记7.25 7.25笔记一、MapReduce的特殊使用场景1.1 通过MapReduce程序实现多文件Join操作1.1.1 通过在Reduce端实现join操作1.1.2 通过在Map端实现join操作 1.2 MapReduce中的计数器的使用1.2.1 计数器使用两种方式 1.3 MapReduce实现数据清洗 二、MapReduce的OutputFormat…...

全方位对比 Postgres 和 MongoDB (2023 版)

本文为「数据库全方位对比系列」第二篇&#xff0c;该系列的首部作品为「全方位对比 Postgres 和 MySQL (2023 版)」 为何对比 Postgres 和 MongoDB 根据 2023 年 Stack Overflow 调研&#xff0c;Postgres 已经成为最受欢迎和渴望的数据库了。 MongoDB 曾连续 4 年 (2017 - …...

本地部署中文LLaMA模型实战教程,民间羊驼模型

羊驼实战系列索引 博文1:本地部署中文LLaMA模型实战教程,民间羊驼模型(本博客) 博文2:本地训练中文LLaMA模型实战教程,民间羊驼模型 博文3:精调训练中文LLaMA模型实战教程,民间羊驼模型 简介 LLaMA大部分是英文语料训练的,讲中文能力很弱。如果我们想微调训练自己的…...

全志F1C200S嵌入式驱动开发(spi-nor image制作)

【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】 一般soc系统里面添加spi-nor flash芯片,特别是对linux soc来说,都是把它当成文件系统来使用的。spi-nor flash和spi-nand flash相比,虽然空间小了点,但是胜在稳定,这是很多工业…...

JSON格式Python,Java,PHP等封装图片识别商品数据API方法

淘宝是一个网上购物平台&#xff0c;售卖各类商品&#xff0c;包括服装、鞋类、家居用品、美妆产品、电子产品等。要获取淘宝天猫图片识别商品数据&#xff0c;您可以通过开放平台的接口或者直接访问淘宝天猫商城的网页来获取图片识别商品数据。以下是两种常用方法的介绍&#…...

Vue应用案例

项目一&#xff1a;记事本 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8" /><title>title</title></head> <body><div id"app"><h2 >记事本</h2><input …...

GPT-3.5:ChatGPT的奇妙之处和革命性进步

&#x1f337;&#x1f341; 博主 libin9iOak带您 Go to New World.✨&#x1f341; &#x1f984; 个人主页——libin9iOak的博客&#x1f390; &#x1f433; 《面试题大全》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33…...

【Hadoop 01】简介

目录 1 Hadoop 简介 2 下载并配置Hadoop 2.1 修改/etc/profile 2.2 修改hadoop-env.sh 2.3 修改core-site.xml 2.4 修改hdfs-site.xml 2.5 修改mapred-site.xml 2.6 修改yarn-site.xml 2.7 修改workers 2.8 修改start-dfs.sh、stop-dfs.sh 2.9 修改start-yarn.sh、s…...

【C++】开源:跨平台轻量日志库easyloggingpp

&#x1f60f;★,:.☆(&#xffe3;▽&#xffe3;)/$:.★ &#x1f60f; 这篇文章主要介绍跨平台轻量日志库easyloggingpp。 无专精则不能成&#xff0c;无涉猎则不能通。。——梁启超 欢迎来到我的博客&#xff0c;一起学习&#xff0c;共同进步。 喜欢的朋友可以关注一下&am…...

业务系统对接大模型的基础方案:架构设计与关键步骤

业务系统对接大模型&#xff1a;架构设计与关键步骤 在当今数字化转型的浪潮中&#xff0c;大语言模型&#xff08;LLM&#xff09;已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中&#xff0c;不仅可以优化用户体验&#xff0c;还能为业务决策提供…...

Cursor实现用excel数据填充word模版的方法

cursor主页&#xff1a;https://www.cursor.com/ 任务目标&#xff1a;把excel格式的数据里的单元格&#xff0c;按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例&#xff0c;…...

QMC5883L的驱动

简介 本篇文章的代码已经上传到了github上面&#xff0c;开源代码 作为一个电子罗盘模块&#xff0c;我们可以通过I2C从中获取偏航角yaw&#xff0c;相对于六轴陀螺仪的yaw&#xff0c;qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...

Leetcode 3577. Count the Number of Computer Unlocking Permutations

Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接&#xff1a;3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯&#xff0c;要想要能够将所有的电脑解锁&#x…...

【磁盘】每天掌握一个Linux命令 - iostat

目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat&#xff08;I/O Statistics&#xff09;是Linux系统下用于监视系统输入输出设备和CPU使…...

EtherNet/IP转DeviceNet协议网关详解

一&#xff0c;设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络&#xff0c;本网关连接到EtherNet/IP总线中做为从站使用&#xff0c;连接到DeviceNet总线中做为从站使用。 在自动…...

select、poll、epoll 与 Reactor 模式

在高并发网络编程领域&#xff0c;高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表&#xff0c;以及基于它们实现的 Reactor 模式&#xff0c;为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。​ 一、I…...

Java + Spring Boot + Mybatis 实现批量插入

在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法&#xff1a;使用 MyBatis 的 <foreach> 标签和批处理模式&#xff08;ExecutorType.BATCH&#xff09;。 方法一&#xff1a;使用 XML 的 <foreach> 标签&#xff…...

保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek

文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama&#xff08;有网络的电脑&#xff09;2.2.3 安装Ollama&#xff08;无网络的电脑&#xff09;2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...

解读《网络安全法》最新修订,把握网络安全新趋势

《网络安全法》自2017年施行以来&#xff0c;在维护网络空间安全方面发挥了重要作用。但随着网络环境的日益复杂&#xff0c;网络攻击、数据泄露等事件频发&#xff0c;现行法律已难以完全适应新的风险挑战。 2025年3月28日&#xff0c;国家网信办会同相关部门起草了《网络安全…...