当前位置: 首页 > news >正文

机器学习深度学习——线性回归的基本元素

回归用来表示输入输出之间的关系。
用实际例子来解释一下线性回归:根据房屋的面积、房龄来估算房屋价格。为了实现这个预测放假的模型,需要收集一个真实的数据集,该数据集包括了房屋的销售价格、面积和房龄。
在机器学习中,这个数据集称为训练集(training set),每行数据称为样本(sample)数据点(data point),试图预测的目标称为标签(label)目标(target)。预测所依据的自变量(面积和房龄)称为特征(feature)
通常,我们使用n来表示数据集中的样本数。对索引为i的样本,其输入表示为:
x ( i ) = [ x 1 ( i ) , x 2 ( i ) ] T x^{(i)}=[x_1^{(i)},x_2^{(i)}]^T x(i)=[x1(i),x2(i)]T
其对应的标签是:
y ( i ) y^{(i)} y(i)

线性回归的基本元素

  • 线性模型
  • 损失函数
  • 解析解

线性模型

p r i c e = w a r e a ⋅ a r e a + w a g e ⋅ a g e + b price=w_{area}·area+w_{age}·age+b price=wareaarea+wageage+b
其中,w为权重,决定了每个特征对我们预测值的影响。b为偏置,指当所有特征取0时的预测值。
严格来说,上式是输入特征的一种仿射变换,其特点是通过加权和特征进行线性变换,并通过偏置项来进行平移。
而在机器学习中,通常使用高维数据集,建模时采用线性代数表示法会比较方便。当我们的输入包含d个特征时,我们将预测结果表示为:
y ^ = w 1 x 1 + . . . + w d x d + b \hat{y}=w_1x_1+...+w_dx_d+b y^=w1x1+...+wdxd+b
将所有的特征放到向量x中,并将所有权重放到向量w中,可以用点积来简洁地表达模型:
y ^ = w T x + b \hat{y}=w^Tx+b y^=wTx+b
显然,向量x只能对应于单个数据样本的特征。
用符号表示的矩阵X可以很方便地引用我们整个数据集的n个样本。其中,X的每一行是一个样本,每一列是一种特征
对于特征集合X,预测值可以通过矩阵-向量乘法表示为:
y ^ = X w + b \hat{y}=Xw+b y^=Xw+b
这个过程中的求和将使用广播机制,给定X和y,线性回归的目标就是找到一组权重向量w和偏置b:当给定从X的同分布中取样的新样本特征时,能使得新样本预测标签的误差尽可能小。
但即使确信特征与标签的潜在关系是线性的, 我们也会加入一个噪声项来考虑观测误差带来的影响。
因此,在开始寻找最好的模型参数w和b之前,还需要两个东西:
(1)一种模型质量的度量方式
(2)一种能够更新模型以提高模型预测质量的方法

损失函数

损失函数能够量化目标的实际值与预测值之间的差距。通常选择非负数作为损失,数值越小表示损失越小,完美预测的损失为0。
回归问题中最常用损失函数是平方误差函数:
l ( i ) ( w , b ) = 1 2 ( y ^ ( i ) − y ( i ) ) 2 l^{(i)}(w,b)=\frac{1}{2}(\hat{y}^{(i)}-y^{(i)})^2 l(i)(w,b)=21(y^(i)y(i))2
常数1/2不会带来本质上的差别,但这样的形式会稍微简单一点(因为求导后常系数会变为1)。
由于平方误差函数中的二次方项,估计值和观测值之间较大的差异会导致更大的损失。为了度量模型在整个数据集上的质量,我们要计算在训练集n个样本上的损失均值(等价于求和):
L ( w , b ) = 1 n ∑ i = 1 n l ( i ) ( w , b ) = 1 n ∑ i = 1 n 1 2 ( w T x ( i ) + b − y ( i ) ) 2 L(w,b)=\frac{1}{n}\sum_{i=1}^nl^{(i)}(w,b) =\frac{1}{n}\sum_{i=1}^n{\frac{1}{2}(w^Tx^{(i)}+b-y^{(i)})^2} L(w,b)=n1i=1nl(i)(w,b)=n1i=1n21(wTx(i)+by(i))2
在训练模型时,希望寻找一组参数,这组参数能最小化在所有训练样本上的总损失。

解析解

线性回归是一个很简单的优化问题,线性回归的解可以用一个公式简单表达,这类解叫做解析解。
首先,将偏置b合并到参数w中,合并方法是在包含所有参数的矩阵中附加一列。我们的预测问题是最小化:
∣ ∣ y − X w ∣ ∣ 2 ||y-Xw||^2 ∣∣yXw2
这在损失平面上只有一个临界点,对应于整个取余的损失极小点。将损失关于w的导数设为0,得到解析解:
w ∗ = ( X T X ) − 1 X T y w^*=(X^TX)^{-1}X^Ty w=(XTX)1XTy
但是解析解对问题限制太严格,不适合广泛应用于深度学习,接下来讲解随机梯度下降,几乎可以用来优化所有深度学习模型。

相关文章:

机器学习深度学习——线性回归的基本元素

回归用来表示输入输出之间的关系。 用实际例子来解释一下线性回归:根据房屋的面积、房龄来估算房屋价格。为了实现这个预测放假的模型,需要收集一个真实的数据集,该数据集包括了房屋的销售价格、面积和房龄。 在机器学习中,这个数…...

K8S初级入门系列之八-网络

一、前言 本章节我们将了解K8S的相关网络概念,包括K8S的网络通讯原理,以及Service以及相关的概念,包括Endpoint,EndpointSlice,Headless service,Ingress等。 二、网络通讯原理和实现 同一K8S集群&…...

分段@Transactional 坑及失效问题

Transactional 背景&#xff1a;在某些情况下&#xff0c;我们需要分段transaction&#xff0c;在最外面没有transaction&#xff0c;里面分成几个transaction&#xff0c;保证分段是成功的。 问题代码&#xff1a; Service public Order getOrder1(String id) {Optional<Or…...

25、matlab里面的10中优化方法介绍——Opt_Golden法(matlab程序)

1.简述 基本思想 黄金分割法也称为 0.618 法&#xff0c;其基本思想是通过取试探点和进行函数值比较&#xff0c;使包含极小点的搜索区间不断缩短以逼近极小值点。适用于确定区间上的任何单谷函数求极小值的问题。 公式推导 设有定义在[ a , b ] [a,b][a,b]上的单谷函数 φ ( …...

点云拟合球体

前言&#xff1a;在很多情况下&#xff0c;需要根据点云来拟合球体&#xff0c;本博文主要介绍各种方法的拟合情况及优缺点&#xff0c;希望对各位小伙伴有所帮助&#xff01; 目录 1. vtkFitImplicitFunction进行球拟合 2. 四点求解球 1. vtkFitImplicitFunction进行球拟合 …...

基于动态规划(DP)算法的增程式EV能量管理策略研究(MATLAB编程)

文章目录 算法代码仿真结果结果分析算法代码 clc; clear; close all; load CWTVC.mat N=length(T_z); %N=200;load minFuelConsup.txt minFuel_Pe=minFuelConsup(:...

前端知识点视频补充

使用工具&#xff1a; Vscode使用&#xff1a; 需要下载插件&#xff1a;open in browser。这个插件可以快速打开浏览器。 选择文件夹有两种方式&#xff1a;选择打开文件、拖拽方式&#xff08;这种最方便&#xff09; 快捷键&#xff1a;快速生成Htm结构文件&#xff1a;…...

python多线程—终止子线程

总体思路 1、获取需要终止的子线程id 2、根据子线程id&#xff0c;终止子线程。 过程 获取子线程id&#xff1a; import threading Thread_id threading.get_ident() # 获取子线程的id值线程终止函数 def async_raise(Thread_id, exctype):"""raises th…...

#P1012. [NOIP2015提高组] 神奇的幻方

题目描述 幻方是一种很神奇的 N \times NNN 矩阵&#xff1a;它由数字 1,2,3, \ldots ,N \times N1,2,3,…,NN 构成&#xff0c;且每行、每列及两条对角线上的数字之和都相同。 当 NN 为奇数时&#xff0c;我们可以通过以下方法构建一个幻方&#xff1a; 首先将 11 写在第一行…...

(学习笔记-IP)Ping的工作原理

Ping是基于ICMP协议工作的&#xff0c;ICMP报文封装在IP包里面&#xff0c;它工作在网络层&#xff0c;是IP协议的助手。 ICMP包头的类型字段&#xff0c;大致可分为两大类&#xff1a; 一类是用于诊断的查询消息&#xff0c;也就是查询报文类型一类是通知出错原因的错误消息&…...

php 进程间通信:管道、uds

1、管道 1.1、管道概念 管道是单向的、先进先出的&#xff0c;它把进程的输出和另一个进程的输入连接在一起。一个进程往管道写入数据&#xff0c;另一个进程从管道读取数据。数据被从管道中读取出来之后&#xff0c;将被删除&#xff0c;其他进程无法在读取到相应的数据。管…...

Stable Diffusion如何生成高质量的图-prompt写法介绍

文章目录 Stable Diffusion使用尝试下效果prompt的编写技巧prompt 和 negative promptPrompt格式Prompt规则细节优化Guidance Scale 总结 Stable Diffusion Stable Diffusion是一个开源的图像生成AI系统,由Anthropic公司开发。它基于 Transformer模型架构,可以通过文字描述生成…...

MySQL 高级SQL语句(一)

目录 一、高级SQL语句&#xff08;进阶查询&#xff09; 1.1 select 1.2 distinct 1.3 where 1.4 and 和 or 1.5 in 1.6 between 1.7 通配符 1.8 like 1.9 order by 一、高级SQL语句&#xff08;进阶查询&#xff09; 先准备2个表 一个location表&#xff1a; use m…...

SkyWalking链路追踪-技术文档首页

SkyWalking 文档中文版&#xff08;社区提供&#xff09; (skyapm.github.io)https://skyapm.github.io/document-cn-translation-of-skywalking/ SkyWalking-基本概念 SkyWalking链路追踪是一个用于分布式系统的性能监控工具&#xff0c;它帮助开发人员了解系统中各组件之间…...

AndroidStudio Memory profiler(内存分析器)

1.Record Java/Kotlin allocations 查看java 层中对象的调用栈和短时间内创建对象的次数。可用于内存抖动快速分析,可用快速查找到该对象的调用栈(等同于mat) 从上图可见&#xff0c;短时间内创建了23个char[] 数组&#xff0c;其中最大的char[] 占用20k, 查看cll stack 调用…...

【C++模板进阶】

目录 一、模板使用时的一个小注意点二、非类型模板参数三、类模板的特化3.1函数模板的特化3.2类模板的特化3.2.1全特化3.2.2偏特化 四、模板的分离编译4.1模板不支持分离编译4.2模板分离编译报错的分析4.2解决方案 五、模板的总结 一、模板使用时的一个小注意点 在使用模板时&…...

(一)RabbitMQ概念-优势、劣势、应用场景 、AMQP、工作原理

Lison <dreamlison163.com>, v1.0.0, 2023.06.22 RabbitMQ概念-优势、劣势、应用场景 、AMQP、工作原理 文章目录 RabbitMQ概念-优势、劣势、应用场景 、AMQP、工作原理RabbitMQ概念RabbitMQ的优势RabbitMQ劣势RabbitMQ应用的场景RabbitMQ_AMQPRabbitMQ工作原理 RabbitM…...

JetBrains全家桶:如何自定义实现类TODO注释?

文章目录 效果图具体方法参考文献 效果图 TODO注释大家应该都用过&#xff0c;在注释开头打上TODO的话&#xff0c;软件下方的TODO选项卡里就可以自动筛选出你打了TODO的注释&#xff0c;你可以点击里面对应的注释来实现快速跳转。 jetbrains全家桶&#xff08;如Pycharm、Int…...

【技术干货】工业级BLE5.2蓝牙模块SKB378 使用教程,AT指令集

SKB378是一个高度集成的蓝牙5.2模组&#xff0c;可用来在2.4GHz ISM频段内做高速率、短距离无线通信。工业级标准&#xff0c;支持主从模式(1主对8从)&#xff0c;支持串口透传&#xff0c;AT指令控制&#xff0c;且支持AoA蓝牙高精度室内定位&#xff0c;模组内部集成32位ARM …...

零基础深度学习——学习笔记1 (逻辑回归)

前言 因为各种各样的原因要开始学习深度学习了&#xff0c;跟着吴恩达老师的深度学习视频&#xff0c;自己总结一些知识点&#xff0c;以及学习中遇到的一些问题&#xff0c;以便记录学习轨迹以及以后复习使用&#xff0c;为了便于自己理解&#xff0c;我会将一些知识点用以个…...

Python|GIF 解析与构建(5):手搓截屏和帧率控制

目录 Python&#xff5c;GIF 解析与构建&#xff08;5&#xff09;&#xff1a;手搓截屏和帧率控制 一、引言 二、技术实现&#xff1a;手搓截屏模块 2.1 核心原理 2.2 代码解析&#xff1a;ScreenshotData类 2.2.1 截图函数&#xff1a;capture_screen 三、技术实现&…...

挑战杯推荐项目

“人工智能”创意赛 - 智能艺术创作助手&#xff1a;借助大模型技术&#xff0c;开发能根据用户输入的主题、风格等要求&#xff0c;生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用&#xff0c;帮助艺术家和创意爱好者激发创意、提高创作效率。 ​ - 个性化梦境…...

Cesium1.95中高性能加载1500个点

一、基本方式&#xff1a; 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...

Linux云原生安全:零信任架构与机密计算

Linux云原生安全&#xff1a;零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言&#xff1a;云原生安全的范式革命 随着云原生技术的普及&#xff0c;安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测&#xff0c;到2025年&#xff0c;零信任架构将成为超…...

浪潮交换机配置track检测实现高速公路收费网络主备切换NQA

浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求&#xff0c;本次涉及的主要是收费汇聚交换机的配置&#xff0c;浪潮网络设备在高速项目很少&#xff0c;通…...

逻辑回归暴力训练预测金融欺诈

简述 「使用逻辑回归暴力预测金融欺诈&#xff0c;并不断增加特征维度持续测试」的做法&#xff0c;体现了一种逐步建模与迭代验证的实验思路&#xff0c;在金融欺诈检测中非常有价值&#xff0c;本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...

uniapp 集成腾讯云 IM 富媒体消息(地理位置/文件)

UniApp 集成腾讯云 IM 富媒体消息全攻略&#xff08;地理位置/文件&#xff09; 一、功能实现原理 腾讯云 IM 通过 消息扩展机制 支持富媒体类型&#xff0c;核心实现方式&#xff1a; 标准消息类型&#xff1a;直接使用 SDK 内置类型&#xff08;文件、图片等&#xff09;自…...

Docker拉取MySQL后数据库连接失败的解决方案

在使用Docker部署MySQL时&#xff0c;拉取并启动容器后&#xff0c;有时可能会遇到数据库连接失败的问题。这种问题可能由多种原因导致&#xff0c;包括配置错误、网络设置问题、权限问题等。本文将分析可能的原因&#xff0c;并提供解决方案。 一、确认MySQL容器的运行状态 …...

Modbus RTU与Modbus TCP详解指南

目录 1. Modbus协议基础 1.1 什么是Modbus? 1.2 Modbus协议历史 1.3 Modbus协议族 1.4 Modbus通信模型 🎭 主从架构 🔄 请求响应模式 2. Modbus RTU详解 2.1 RTU是什么? 2.2 RTU物理层 🔌 连接方式 ⚡ 通信参数 2.3 RTU数据帧格式 📦 帧结构详解 🔍…...

基于江科大stm32屏幕驱动,实现OLED多级菜单(动画效果),结构体链表实现(独创源码)

引言 在嵌入式系统中&#xff0c;用户界面的设计往往直接影响到用户体验。本文将以STM32微控制器和OLED显示屏为例&#xff0c;介绍如何实现一个多级菜单系统。该系统支持用户通过按键导航菜单&#xff0c;执行相应操作&#xff0c;并提供平滑的滚动动画效果。 本文设计了一个…...