Pytorch个人学习记录总结 07
目录
神经网络-非线性激活
神经网络-线形层及其他层介绍
神经网络-非线性激活
官方文档地址:torch.nn — PyTorch 2.0 documentation
常用的:Sigmoid、ReLU、LeakyReLU等。
作用:为模型引入非线性特征,这样才能在训练过程中训练出符合更多特征的模型。
其中有个参数是inplace
,默认为False
,表示是否就地改变输入值,True则表示直接改变了input不再有另外的返回值;False则没有直接改变input并有返回值(建议是inplace=False
)。
import torch
from torch import nninput = torch.tensor([[3, -1],[-0.5, 1]])
input = torch.reshape(input, (1, 1, 2, 2))relu = nn.ReLU()
input_relu = relu(input)print('input={}\ninput_relu:{}'.format(input, input_relu))# input=tensor([[[[ 3.0000, -1.0000],
# [-0.5000, 1.0000]]]])
# input_relu:tensor([[[[3., 0.],
# [0., 1.]]]])
神经网络-线形层及其他层介绍
Linear Layers
中的torch.nn.Linear(in_features, out_features, bias=True)。默认bias=True
。对传入数据应用线性变换
Parameters:
in_features
– size of each input sample(每个输入样本的大小)out_features
– size of each output sample(每个输出样本的大小)bias
– If set to False, the layer will not learn an additive bias. Default: True(如果为False,则该层不会学习加法偏置,默认为true)
Shape:分别关注输入、输出的最后一个维度的大小,在训练过程中,nn.Linear往往是当作的展平为一维后最后几步的全连接层,所以此时就只关注了通道数,即往往Input和Outputs是一维的)
“展平为一维”经常用到torch.nn.Flatten(start_dim=1, end_dim=- 1)
想说一下start_dim
,它表示“从start_dim开始把后面的维度都展平到同一维度上”,默认是是1
,在实际训练中从start_dim=1
开始展平,因为在训练中的tensor是4维的,分别是[batch_size, C, H, W],而第0维的batch_size不能动它,所以是从1开始的。
还比较重要的有:torch.nn.BatchNorm2d、torch.nn.Dropout、Loss Functions
(之后再讲)。其它的Transformer Layers、Recurrent Layers都不是很常用。
import torch# 对4维tensor展平,start_dim=1input = torch.arange(54)
input = torch.reshape(input, (2, 3, 3, 3))y_0 = torch.flatten(input)
y_1 = torch.flatten(input, start_dim=1)print(input.shape)
print(y_0.shape)
print(y_1.shape)# torch.Size([2, 3, 3, 3])
# torch.Size([54])
# torch.Size([2, 27])
相关文章:

Pytorch个人学习记录总结 07
目录 神经网络-非线性激活 神经网络-线形层及其他层介绍 神经网络-非线性激活 官方文档地址:torch.nn — PyTorch 2.0 documentation 常用的:Sigmoid、ReLU、LeakyReLU等。 作用:为模型引入非线性特征,这样才能在训练过程中…...

vue3+ts+elementui-plus二次封装树形表格
复制粘贴即可: 一、定义table组件 <template><div classmain><div><el-table ref"multipleTableRef" :height"height" :default-expand-all"isExpend" :data"treeTableData"style"width: 100%…...
机器学习/深度学习常见算法实现(秋招版)
包括BN层、卷积层、池化层、交叉熵、随机梯度下降法、非极大抑制、k均值聚类等秋招常见的代码实现。 1. BN层 import numpy as npdef batch_norm(outputs, gamma, beta, epsilon1e-6, momentum0.9, running_mean0, running_var1)::param outputs: [B, L]:param gamma: mean:p…...

京东技术专家首推:Spring 微服务架构设计,GitHub 星标 128K
前言 本书提供了实现大型响应式微服务的实用方法和指导原则,并通过示例全面 讲解如何构建微服务。本书深入介绍了 Spring Boot、Spring Cloud、 Docker、Mesos 和 Marathon,还会教授如何用 Spring Boot 部署自治服务,而 无须使用重量级应用服…...
R语言--森林图制作
#数据准备- data5 #install.packages("rmda")rm(list=ls())library(MASS)library(rmda)library(dplyr) #mutate依赖环境library(magrittr) #%>%依赖setwd("D:/R/nomo5new2")data...
Tomcat中利用war包部署
在Tomcat中利用war包部署Web应用程序时,默认情况下,应用程序的上下文路径(也称为项目名称)将是war文件的名称(去除.war扩展名)。这意味着您在访问Web应用程序时必须在URL中包含项目名称。例如,如…...

[JAVAee]线程安全
目录 线程安全的理解 线程不安全的原因 ①非原子性 ②可见性 ③代码重排序 体会何为不安全的线程 保证线程安全 一个代码在多线程的环境下就很容易出现错误. 线程安全的理解 线程安全是什么呢?通俗的来讲,线程安全就是在多线程的环境下,代码的结果是符合我们预期的,就…...
ELK环境搭建——概况
Elastic Stack,核心产品包括 Elasticsearch、Kibana、Beats 和 Logstash等等。能够安全可靠地从任何来源获取任何格式的数据,然后对数据进行搜索、分析和可视化。 目录 一:Elasticsearch: 1.1 从数据中探寻各种问题的答案 1.1.1 定义您自己的搜索方式...
面试知识点整理
计算机的物理内存是有限的,所以操作系统在遇到内存不足时,会通过换页机制暂时把 某个进程未使用的内存中的数据搬移到硬盘上(比如 Linux 的 swap 分区),并在系统页表中 删除相应的表项。当该进程访问数据已经被搬移到硬…...
腾讯云服务器CVM计算型c6/c5实例CPU型号、处理器主频大全
腾讯云服务器CVM计算型C6、C5、C4、CN3、C3和C2实例,计算型C6云服务器CPU采用Intel Xeon Ice Lake处理器,主频3.2GHz,睿频3.5GHz,腾讯云服务器网分享更多计算型CVM云服务器CPU型号、处理器主频性能说明: 目录 云服务…...

vue3笔记-脚手架篇
第一章 基础篇 第二章 脚手架篇 vue2与vue3的一些区别 响应式系统: Vue 2 使用 Object.defineProperty 进行响应式数据的劫持和监听,它对数据监听是一项项的进行监听,因此,当新增属性发生变化时,它无法监测到&…...
数字的补数
题目: 对整数的二进制表示取反(0 变 1 ,1 变 0)后,再转换为十进制表示,可以得到这个整数的补数。 例如,整数 5 的二进制表示是 "101" ,取反后得到 "010" &…...
Taskfile demo
https://github.com/yangyang5214/blog/issues/1 makefile 很好用,但是有些语法我不会。 go-task yml & shell 不错,推荐 Taskfile.yml https://github.com/go-task/task/blob/main/.golangci.yml # go install github.com/go-task/task/v3/cmd/ta…...

MyBatis学习笔记之高级映射及延迟加载
文章目录 环境搭建,数据配置多对一的映射的思路逻辑级联属性映射association分布查询 一对多的映射的思路逻辑collection分布 环境搭建,数据配置 t_class表 t_stu表 多对一的映射的思路逻辑 多对一:多个学生对应一个班级 多的一方是st…...

小程序如何删除/上架/下架商品
在小程序中,产品的删除、上架和下架是常见的操作,可以根据实际需求来管理商品的展示与销售。下面将介绍如何在小程序中删除上架下架商品的具体步骤。 进入商品管理页面, 在个人中心点击管理入口,然后找到“商品管理”菜单并点击。…...

Failed to load local font resource:微信小程序加载第三方字体
加载本地字体.ttf 将ttf转换为base64格式:https://transfonter.org/ 步骤如下 将下载后的stylesheet.css 里的font-family属性名字改一下,然后引进页面里就行了,全局样式就放app.scss,单页面就引入单页面 注: .title…...

使用fastjson错误
说明:使用fastjson时,对象解析不成功,一直报错,但是json格式没有错; 错误信息:Method threw ‘com.alibaba.fastjson.JSONException’ exception. json数据是正确的 分析:注意看,fa…...

【GitOps系列】使用Kustomize和Helm定义应用配置
文章目录 使用 Kustomize 定义应用改造示例应用1.创建基准和多环境目录2.环境差异分析3.为 Base 目录创建通用 Manifest4.为开发环境目录创建差异 Manifest5.为预发布环境创建差异 Manifest6.为生产环境创建差异 Manifest 部署 Kustomize 应用部署到开发环境部署到生产环境 使用…...
Android kotlin高阶函数与Java lambda表达式介绍与实战
一、介绍 目前在Java JDK版本的不断升高,新的表达式已开始出现,但是在Android混淆开发中,kotlin的语言与Java的语言是紧密贴合的。所以Java lambda表达式在kotlin中以新的身份出现:高阶函数与lambda表达式特别类似。接下来我讲会先…...

自然语言处理实战项目13-基于GRU模型与NER的关键词抽取模型训练全流程
大家好,我是微学AI,今天给大家介绍一下自然语言处理实战项目13-基于GRU模型与NER的关键词抽取模型训练全流程。本文主要介绍关键词抽取样例数据、GRU模型模型构建与训练、命名实体识别(NER)、模型评估与应用,项目的目标是通过训练一个GRU模型…...

日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻
在如今就业市场竞争日益激烈的背景下,越来越多的求职者将目光投向了日本及中日双语岗位。但是,一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧?面对生疏的日语交流环境,即便提前恶补了…...

linux之kylin系统nginx的安装
一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源(HTML/CSS/图片等),响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址,提高安全性 3.负载均衡服务器 支持多种策略分发流量…...

UDP(Echoserver)
网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法:netstat [选项] 功能:查看网络状态 常用选项: n 拒绝显示别名&#…...

ESP32读取DHT11温湿度数据
芯片:ESP32 环境:Arduino 一、安装DHT11传感器库 红框的库,别安装错了 二、代码 注意,DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...

【开发技术】.Net使用FFmpeg视频特定帧上绘制内容
目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法,当前调用一个医疗行业的AI识别算法后返回…...
【生成模型】视频生成论文调研
工作清单 上游应用方向:控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...
《C++ 模板》
目录 函数模板 类模板 非类型模板参数 模板特化 函数模板特化 类模板的特化 模板,就像一个模具,里面可以将不同类型的材料做成一个形状,其分为函数模板和类模板。 函数模板 函数模板可以简化函数重载的代码。格式:templa…...

mac 安装homebrew (nvm 及git)
mac 安装nvm 及git 万恶之源 mac 安装这些东西离不开Xcode。及homebrew 一、先说安装git步骤 通用: 方法一:使用 Homebrew 安装 Git(推荐) 步骤如下:打开终端(Terminal.app) 1.安装 Homebrew…...

【JVM】Java虚拟机(二)——垃圾回收
目录 一、如何判断对象可以回收 (一)引用计数法 (二)可达性分析算法 二、垃圾回收算法 (一)标记清除 (二)标记整理 (三)复制 (四ÿ…...

并发编程 - go版
1.并发编程基础概念 进程和线程 A. 进程是程序在操作系统中的一次执行过程,系统进行资源分配和调度的一个独立单位。B. 线程是进程的一个执行实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位。C.一个进程可以创建和撤销多个线程;同一个进程中…...