当前位置: 首页 > news >正文

Pytorch个人学习记录总结 07

目录

神经网络-非线性激活

神经网络-线形层及其他层介绍 


神经网络-非线性激活

官方文档地址:torch.nn — PyTorch 2.0 documentation 

常用的:Sigmoid、ReLU、LeakyReLU等。

 

作用:为模型引入非线性特征,这样才能在训练过程中训练出符合更多特征的模型。

其中有个参数是inplace,默认为False,表示是否就地改变输入值,True则表示直接改变了input不再有另外的返回值;False则没有直接改变input并有返回值(建议是inplace=False)。

import torch
from torch import nninput = torch.tensor([[3, -1],[-0.5, 1]])
input = torch.reshape(input, (1, 1, 2, 2))relu = nn.ReLU()
input_relu = relu(input)print('input={}\ninput_relu:{}'.format(input, input_relu))# input=tensor([[[[ 3.0000, -1.0000],
#           [-0.5000,  1.0000]]]])
# input_relu:tensor([[[[3., 0.],
#           [0., 1.]]]])

神经网络-线形层及其他层介绍 

Linear Layers中的torch.nn.Linear(in_features, out_features, bias=True)。默认bias=True。对传入数据应用线性变换

Parameters

  • in_features – size of each input sample(每个输入样本的大小)
  • out_features – size of each output sample(每个输出样本的大小)
  • bias – If set to False, the layer will not learn an additive bias. Default: True(如果为False,则该层不会学习加法偏置,默认为true)

Shape:分别关注输入、输出的最后一个维度的大小,在训练过程中,nn.Linear往往是当作的展平为一维后最后几步的全连接层,所以此时就只关注了通道数,即往往Input和Outputs是一维的)

“展平为一维”经常用到torch.nn.Flatten(start_dim=1, end_dim=- 1)

想说一下start_dim,它表示“从start_dim开始把后面的维度都展平到同一维度上”,默认是是1,在实际训练中从start_dim=1开始展平,因为在训练中的tensor是4维的,分别是[batch_size, C, H, W],而第0维的batch_size不能动它,所以是从1开始的。

还比较重要的有:torch.nn.BatchNorm2d、torch.nn.Dropout、Loss Functions(之后再讲)。其它的Transformer Layers、Recurrent Layers都不是很常用。

import torch# 对4维tensor展平,start_dim=1input = torch.arange(54)
input = torch.reshape(input, (2, 3, 3, 3))y_0 = torch.flatten(input)
y_1 = torch.flatten(input, start_dim=1)print(input.shape)
print(y_0.shape)
print(y_1.shape)# torch.Size([2, 3, 3, 3])
# torch.Size([54])
# torch.Size([2, 27])

相关文章:

Pytorch个人学习记录总结 07

目录 神经网络-非线性激活 神经网络-线形层及其他层介绍 神经网络-非线性激活 官方文档地址:torch.nn — PyTorch 2.0 documentation 常用的:Sigmoid、ReLU、LeakyReLU等。 作用:为模型引入非线性特征,这样才能在训练过程中…...

vue3+ts+elementui-plus二次封装树形表格

复制粘贴即可&#xff1a; 一、定义table组件 <template><div classmain><div><el-table ref"multipleTableRef" :height"height" :default-expand-all"isExpend" :data"treeTableData"style"width: 100%…...

机器学习/深度学习常见算法实现(秋招版)

包括BN层、卷积层、池化层、交叉熵、随机梯度下降法、非极大抑制、k均值聚类等秋招常见的代码实现。 1. BN层 import numpy as npdef batch_norm(outputs, gamma, beta, epsilon1e-6, momentum0.9, running_mean0, running_var1)::param outputs: [B, L]:param gamma: mean:p…...

京东技术专家首推:Spring 微服务架构设计,GitHub 星标 128K

前言 本书提供了实现大型响应式微服务的实用方法和指导原则&#xff0c;并通过示例全面 讲解如何构建微服务。本书深入介绍了 Spring Boot、Spring Cloud、 Docker、Mesos 和 Marathon&#xff0c;还会教授如何用 Spring Boot 部署自治服务&#xff0c;而 无须使用重量级应用服…...

R语言--森林图制作

#数据准备- data5 #install.packages("rmda")rm(list=ls())library(MASS)library(rmda)library(dplyr) #mutate依赖环境library(magrittr) #%>%依赖setwd("D:/R/nomo5new2")data...

Tomcat中利用war包部署

在Tomcat中利用war包部署Web应用程序时&#xff0c;默认情况下&#xff0c;应用程序的上下文路径&#xff08;也称为项目名称&#xff09;将是war文件的名称&#xff08;去除.war扩展名&#xff09;。这意味着您在访问Web应用程序时必须在URL中包含项目名称。例如&#xff0c;如…...

[JAVAee]线程安全

目录 线程安全的理解 线程不安全的原因 ①非原子性 ②可见性 ③代码重排序 体会何为不安全的线程 保证线程安全 一个代码在多线程的环境下就很容易出现错误. 线程安全的理解 线程安全是什么呢?通俗的来讲,线程安全就是在多线程的环境下,代码的结果是符合我们预期的,就…...

ELK环境搭建——概况

Elastic Stack,核心产品包括 Elasticsearch、Kibana、Beats 和 Logstash等等。能够安全可靠地从任何来源获取任何格式的数据,然后对数据进行搜索、分析和可视化。 目录 一:Elasticsearch: 1.1 从数据中探寻各种问题的答案 1.1.1 定义您自己的搜索方式...

面试知识点整理

计算机的物理内存是有限的&#xff0c;所以操作系统在遇到内存不足时&#xff0c;会通过换页机制暂时把 某个进程未使用的内存中的数据搬移到硬盘上&#xff08;比如 Linux 的 swap 分区&#xff09;&#xff0c;并在系统页表中 删除相应的表项。当该进程访问数据已经被搬移到硬…...

腾讯云服务器CVM计算型c6/c5实例CPU型号、处理器主频大全

腾讯云服务器CVM计算型C6、C5、C4、CN3、C3和C2实例&#xff0c;计算型C6云服务器CPU采用Intel Xeon Ice Lake处理器&#xff0c;主频3.2GHz&#xff0c;睿频3.5GHz&#xff0c;腾讯云服务器网分享更多计算型CVM云服务器CPU型号、处理器主频性能说明&#xff1a; 目录 云服务…...

vue3笔记-脚手架篇

第一章 基础篇 第二章 脚手架篇 vue2与vue3的一些区别 响应式系统&#xff1a; Vue 2 使用 Object.defineProperty 进行响应式数据的劫持和监听&#xff0c;它对数据监听是一项项的进行监听&#xff0c;因此&#xff0c;当新增属性发生变化时&#xff0c;它无法监测到&…...

数字的补数

题目&#xff1a; 对整数的二进制表示取反&#xff08;0 变 1 &#xff0c;1 变 0&#xff09;后&#xff0c;再转换为十进制表示&#xff0c;可以得到这个整数的补数。 例如&#xff0c;整数 5 的二进制表示是 "101" &#xff0c;取反后得到 "010" &…...

Taskfile demo

https://github.com/yangyang5214/blog/issues/1 makefile 很好用&#xff0c;但是有些语法我不会。 go-task yml & shell 不错&#xff0c;推荐 Taskfile.yml https://github.com/go-task/task/blob/main/.golangci.yml # go install github.com/go-task/task/v3/cmd/ta…...

MyBatis学习笔记之高级映射及延迟加载

文章目录 环境搭建&#xff0c;数据配置多对一的映射的思路逻辑级联属性映射association分布查询 一对多的映射的思路逻辑collection分布 环境搭建&#xff0c;数据配置 t_class表 t_stu表 多对一的映射的思路逻辑 多对一&#xff1a;多个学生对应一个班级 多的一方是st…...

小程序如何删除/上架/下架商品

在小程序中&#xff0c;产品的删除、上架和下架是常见的操作&#xff0c;可以根据实际需求来管理商品的展示与销售。下面将介绍如何在小程序中删除上架下架商品的具体步骤。 进入商品管理页面&#xff0c; 在个人中心点击管理入口&#xff0c;然后找到“商品管理”菜单并点击。…...

Failed to load local font resource:微信小程序加载第三方字体

加载本地字体.ttf 将ttf转换为base64格式&#xff1a;https://transfonter.org/ 步骤如下 将下载后的stylesheet.css 里的font-family属性名字改一下&#xff0c;然后引进页面里就行了&#xff0c;全局样式就放app.scss&#xff0c;单页面就引入单页面 注&#xff1a; .title…...

使用fastjson错误

说明&#xff1a;使用fastjson时&#xff0c;对象解析不成功&#xff0c;一直报错&#xff0c;但是json格式没有错&#xff1b; 错误信息&#xff1a;Method threw ‘com.alibaba.fastjson.JSONException’ exception. json数据是正确的 分析&#xff1a;注意看&#xff0c;fa…...

【GitOps系列】使用Kustomize和Helm定义应用配置

文章目录 使用 Kustomize 定义应用改造示例应用1.创建基准和多环境目录2.环境差异分析3.为 Base 目录创建通用 Manifest4.为开发环境目录创建差异 Manifest5.为预发布环境创建差异 Manifest6.为生产环境创建差异 Manifest 部署 Kustomize 应用部署到开发环境部署到生产环境 使用…...

Android kotlin高阶函数与Java lambda表达式介绍与实战

一、介绍 目前在Java JDK版本的不断升高&#xff0c;新的表达式已开始出现&#xff0c;但是在Android混淆开发中&#xff0c;kotlin的语言与Java的语言是紧密贴合的。所以Java lambda表达式在kotlin中以新的身份出现&#xff1a;高阶函数与lambda表达式特别类似。接下来我讲会先…...

自然语言处理实战项目13-基于GRU模型与NER的关键词抽取模型训练全流程

大家好&#xff0c;我是微学AI&#xff0c;今天给大家介绍一下自然语言处理实战项目13-基于GRU模型与NER的关键词抽取模型训练全流程。本文主要介绍关键词抽取样例数据、GRU模型模型构建与训练、命名实体识别(NER)、模型评估与应用&#xff0c;项目的目标是通过训练一个GRU模型…...

【Linux】shell脚本忽略错误继续执行

在 shell 脚本中&#xff0c;可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行&#xff0c;可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令&#xff0c;并忽略错误 rm somefile…...

基于ASP.NET+ SQL Server实现(Web)医院信息管理系统

医院信息管理系统 1. 课程设计内容 在 visual studio 2017 平台上&#xff0c;开发一个“医院信息管理系统”Web 程序。 2. 课程设计目的 综合运用 c#.net 知识&#xff0c;在 vs 2017 平台上&#xff0c;进行 ASP.NET 应用程序和简易网站的开发&#xff1b;初步熟悉开发一…...

Objective-C常用命名规范总结

【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名&#xff08;Class Name)2.协议名&#xff08;Protocol Name)3.方法名&#xff08;Method Name)4.属性名&#xff08;Property Name&#xff09;5.局部变量/实例变量&#xff08;Local / Instance Variables&…...

五年级数学知识边界总结思考-下册

目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解&#xff1a;由来、作用与意义**一、知识点核心内容****二、知识点的由来&#xff1a;从生活实践到数学抽象****三、知识的作用&#xff1a;解决实际问题的工具****四、学习的意义&#xff1a;培养核心素养…...

Python爬虫(一):爬虫伪装

一、网站防爬机制概述 在当今互联网环境中&#xff0c;具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类&#xff1a; 身份验证机制&#xff1a;直接将未经授权的爬虫阻挡在外反爬技术体系&#xff1a;通过各种技术手段增加爬虫获取数据的难度…...

TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案

一、TRS收益互换的本质与业务逻辑 &#xff08;一&#xff09;概念解析 TRS&#xff08;Total Return Swap&#xff09;收益互换是一种金融衍生工具&#xff0c;指交易双方约定在未来一定期限内&#xff0c;基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...

SQL慢可能是触发了ring buffer

简介 最近在进行 postgresql 性能排查的时候,发现 PG 在某一个时间并行执行的 SQL 变得特别慢。最后通过监控监观察到并行发起得时间 buffers_alloc 就急速上升,且低水位伴随在整个慢 SQL,一直是 buferIO 的等待事件,此时也没有其他会话的争抢。SQL 虽然不是高效 SQL ,但…...

水泥厂自动化升级利器:Devicenet转Modbus rtu协议转换网关

在水泥厂的生产流程中&#xff0c;工业自动化网关起着至关重要的作用&#xff0c;尤其是JH-DVN-RTU疆鸿智能Devicenet转Modbus rtu协议转换网关&#xff0c;为水泥厂实现高效生产与精准控制提供了有力支持。 水泥厂设备众多&#xff0c;其中不少设备采用Devicenet协议。Devicen…...

Kubernetes 节点自动伸缩(Cluster Autoscaler)原理与实践

在 Kubernetes 集群中&#xff0c;如何在保障应用高可用的同时有效地管理资源&#xff0c;一直是运维人员和开发者关注的重点。随着微服务架构的普及&#xff0c;集群内各个服务的负载波动日趋明显&#xff0c;传统的手动扩缩容方式已无法满足实时性和弹性需求。 Cluster Auto…...

对象回调初步研究

_OBJECT_TYPE结构分析 在介绍什么是对象回调前&#xff0c;首先要熟悉下结构 以我们上篇线程回调介绍过的导出的PsProcessType 结构为例&#xff0c;用_OBJECT_TYPE这个结构来解析它&#xff0c;0x80处就是今天要介绍的回调链表&#xff0c;但是先不着急&#xff0c;先把目光…...