当前位置: 首页 > news >正文

OpenAI的Function calling 和 LangChain的Search Agent

OpenAI的Function calling

         openai最近发布的gpt-3.5-turbo-0613 和 gpt-4-0613版本模型增加了function calling的功能,该功能通过定义功能函数,gpt通过分析问题和函数功能描述来决定是否调用函数,并且生成函数对应的入参。函数调用的功能可以弥补gpt的一些缺点,比如实时信息的缺乏、特定领域能力,使得能够进一步利用gpt的逻辑推理能力,可以将问题进行分解处理,解决问题能力更加强大。

gpt的函数调用功能步骤如下:
    1.使用问句和函数定义调用gpt
         2.gpt选择是否调用函数,并输出参数
         3.解析参数 调用函数
         4.将函数返回作为追加信息再次调用gpt

下面是一个通过调用search api的例子

1.定义+描述函数

        下面代码介绍了一个搜索函数,可以通过GoogleSerperAPI实时搜索网络上的信息。

###定义functions,用于描述函数作用和参数介绍。
functions = [{"name": "get_info_from_web","description": "get more informations from internet use google search","parameters": {"type": "object","properties": {"query": {"type": "string","description": "all the questions or information you want search from internet",}},"required": ["query"],},}
]###函数定义
def get_info_from_web(query):search = GoogleSerperAPIWrapper(serper_api_key="xxxxx")return search.run(query)

2.调用gpt,决定是否调用函数以及函数参数

        当用户问句为"今天杭州天气怎么样?"时,gpt做出了进行调用get_info_from_web函数的决定,并且调用的参数为"query": "杭州天气"。

messages = []
messages.append({"role": "system", "content": "Don't make assumptions about what values to plug into functions. Ask for clarification if a user request is ambiguous. "})
messages.append({"role": "user", "content": "今天杭州天气怎么样?"})
chat_response = chat_completion_request(messages, functions=functions
)
assistant_message = chat_response.json()["choices"][0]["message"]
messages.append(assistant_message)
print(assistant_message)>>>
{'role': 'assistant','content': None,'function_call': {'name': 'get_info_from_web','arguments': '{\n  "query": "杭州天气"\n}'}
}

3.执行gpt的决定,获得回答问题的中间结果

        调用第2步中gpt输出的参数执行相应的函数,获得中间结果。

assistant_message = chat_response.json()["choices"][0]["message"]
if assistant_message.get("function_call"):if assistant_message["function_call"]["name"] == "get_info_from_web":query = json.loads(assistant_message["function_call"]["arguments"])["query"]results = get_info_from_web(query)else:results = f"Error: function {assistant_message['function_call']['name']} does not exist"
print(results)>>>
81°F

4.函数结果和原始问题再次询问gpt,获得最终结果

messages.append({"role": "function", "name": assistant_message["function_call"]["name"], "content": results})
second_response = openai.ChatCompletion.create(model= GPT_MODEL,messages=messages)
print(second_response["choices"][0]["message"]["content"])>>>
今天杭州的天气是81°F。

LangChain的Search Agent        

        在openai的function calling发布之前,LangChain的Agent就可以实现类似功能。Agent接口是LangChain中一个重要的模块,一些应用程序需要根据用户输入灵活地调用LLM和其他工具。Agent接口为此类应用程序提供了灵活性。Agent可以访问一套工具,并根据用户输入确定要使用哪些工具。Agent可以使用多个工具,并将一个工具的输出用作下一个工具的输入。

        以下是search agent的例子。定义GoogleSerperApi工具作为LLM可用的tool,帮助解决相关问题。

from langchain.utilities import GoogleSerperAPIWrapper
from langchain.llms.openai import OpenAI
from langchain.agents import initialize_agent, Tool
from langchain.agents import AgentTypellm = OpenAI(temperature=0)
search = GoogleSerperAPIWrapper(serper_api_key="xxxxxx")
tools = [Tool(name="Intermediate Answer",func=search.run,description="useful for when you need to ask with search",)
]self_ask_with_search = initialize_agent(tools, llm, agent=AgentType.SELF_ASK_WITH_SEARCH, verbose=True
)self_ask_with_search.run("今天杭州天气怎么样?"
)>>>
> Entering new AgentExecutor chain...Yes.
Follow up: 今天是几号?
Intermediate answer: Sunday, July 16, 2023
Follow up: 杭州今天的天气情况?
Intermediate answer: 88°F
So the final answer is: 88°F> Finished chain.
88°F

       agent功能通过设计prompt实现,search agent的prompt设计如下:

"""Question: Who lived longer, Muhammad Ali or Alan Turing?
Are follow up questions needed here: Yes.
Follow up: How old was Muhammad Ali when he died?
Intermediate answer: Muhammad Ali was 74 years old when he died.
Follow up: How old was Alan Turing when he died?
Intermediate answer: Alan Turing was 41 years old when he died.
So the final answer is: Muhammad AliQuestion: When was the founder of craigslist born?
Are follow up questions needed here: Yes.
Follow up: Who was the founder of craigslist?
Intermediate answer: Craigslist was founded by Craig Newmark.
Follow up: When was Craig Newmark born?
Intermediate answer: Craig Newmark was born on December 6, 1952.
So the final answer is: December 6, 1952Question: Who was the maternal grandfather of George Washington?
Are follow up questions needed here: Yes.
Follow up: Who was the mother of George Washington?
Intermediate answer: The mother of George Washington was Mary Ball Washington.
Follow up: Who was the father of Mary Ball Washington?
Intermediate answer: The father of Mary Ball Washington was Joseph Ball.
So the final answer is: Joseph BallQuestion: Are both the directors of Jaws and Casino Royale from the same country?
Are follow up questions needed here: Yes.
Follow up: Who is the director of Jaws?
Intermediate answer: The director of Jaws is Steven Spielberg.
Follow up: Where is Steven Spielberg from?
Intermediate answer: The United States.
Follow up: Who is the director of Casino Royale?
Intermediate answer: The director of Casino Royale is Martin Campbell.
Follow up: Where is Martin Campbell from?
Intermediate answer: New Zealand.
So the final answer is: NoQuestion: {input}
Are followup questions needed here:{agent_scratchpad}"""

 可以从prompt看出,通过四个例子提出了解决问题的方式,即通过follow up + Intermediate answer 分解问题并解决子问题。follow up是gpt的输出,表示需要search tool搜索的问题, Intermediate answer 则为search tool的答案,循环多次之后得到最终答案。
 

相关文章:

OpenAI的Function calling 和 LangChain的Search Agent

OpenAI的Function calling openai最近发布的gpt-3.5-turbo-0613 和 gpt-4-0613版本模型增加了function calling的功能,该功能通过定义功能函数,gpt通过分析问题和函数功能描述来决定是否调用函数,并且生成函数对应的入参。函数调用的功能可以…...

【mysql数据库】MySQL7在Centos7的环境安装

说明: 安装与卸载中,用户全部切换成为root,⼀旦安装,普通用户就能使用。初期练习,mysql不进行用户管理,全部使⽤root进⾏,尽快适应mysql语句,后⾯学了用户管理,在考虑新…...

基于vue+element 分页的封装

目录标题 项目场景:认识分页1.current-page2.page-sizes3.page-size4.layout5.total6.size-change7.current-change 封装分页:创建paging:进行封装 页面中使用:引入效果 项目场景: 分页也是我们在实际应用当中非常常见…...

面试题模拟

C# 装箱和拆箱是什么? 装箱是指用堆空间来存放值类型数据 拆箱是指将存放在堆空间的值类型数据转换到栈空间 值和引用类型在变量赋值时的区别是什么? 值类型的数据赋值的时候是指向同一块内存区域,当前一个改变的时候后一个也会跟着改变。 引…...

Linux6.13 Docker LNMP项目搭建

文章目录 计算机系统5G云计算第四章 LINUX Docker LNMP项目搭建一、项目环境1.环境描述2.容器ip地址规划3.任务需求 二、部署过程1.部署构建 nginx 镜像2.部署构建 mysql 镜像3.部署构建 php 镜像4.验证测试 计算机系统 5G云计算 第四章 LINUX Docker LNMP项目搭建 一、项目…...

数据包协议栈处理

看了两个不错的帖子,记录一下。 ​​​​​​​4.2 TCP Segmentation Offload(TSO)_Remy的学习记录-CSDN博客_tcp-segmentation-offload Linux内核参数之rp_filter - 萝卜1992 - 博客园...

html刷新图片

文章目录 前言网页整体刷新改变图像的url 备注 前言 海思3516的一个开发板,不断的采集图像编码为jpeg,保存为同一个文件。打算用网页实现查看视频的效果,需要前端能够自动刷新。 目前找到了两个方法,一个是网页的不断刷新&#…...

PHP反序列化漏洞之魔术方法

一、魔术方法 PHP魔术方法(Magic Methods)是一组特殊的方法,它们在特定的情况下会被自动调用,用于实现对象的特殊行为或提供额外功能。这些方法的名称都以双下划线开头和结尾,例如: __construct()、__toString()等。 …...

2023年的深度学习入门指南(20) - LLaMA 2模型解析

2023年的深度学习入门指南(20) - LLaMA 2模型解析 上一节我们把LLaMA 2的生成过程以及封装的过程的代码简单介绍了下。还差LLaMA 2的模型部分没有介绍。这一节我们就来介绍下LLaMA 2的模型部分。 这一部分需要一些深度神经网络的基础知识,不懂的话不用着急&#xf…...

智能安全配电装置应用场景有哪些?

安科瑞 华楠 一、应用背景 电力作为一种清洁能源,给人们带来了舒适、便捷的电气化生活。与此同时,由于使用不当,维护不及时等原因引发的漏电触电和电气火灾事故,也给人们的生命和财产带来了巨大的威胁和损失。 为了防止低压配电…...

Rust vs Go:常用语法对比(四)

题图来自 Go vs. Rust performance comparison: The basics 61. Get current date 获取当前时间 package mainimport ( "fmt" "time")func main() { d : time.Now() fmt.Println("Now is", d) // The Playground has a special sandbox, so you …...

c++ 派生类 文本查询程序再探

Query_base类和Query类 //这是一个抽象基类,具体的查询类型从中派生,所有成员都是private的 class Query_base {friend class Query;protected:using line_no TextQuery::line_no;//用于level函数virtual ~Query_base() default;private://eval返回与…...

17. 电话号码的字母组合

题目描述 给定一个仅包含数字 2-9 的字符串,返回所有它能表示的字母组合。答案可以按 任意顺序 返回。 给出数字到字母的映射如下(与电话按键相同)。注意 1 不对应任何字母。 示例 1: 输入:digits "23" …...

Redis 基础知识和核心概念解析:理解 Redis 的键值操作和过期策略

🌷🍁 博主 libin9iOak带您 Go to New World.✨🍁 🦄 个人主页——libin9iOak的博客🎐 🐳 《面试题大全》 文章图文并茂🦕生动形象🦖简单易学!欢迎大家来踩踩~&#x1f33…...

Jenkins中sh函数的用法

在Jenkins的Pipeline中,sh函数的用法 用法一 单个命令字符串包括使用,示例如下: sh echo "Hello, Jenkins!"用法二 多个命令字符串包括命令列表使用,示例如下: sh echo "Step 1" echo "…...

Android 之 Canvas API 详解 (Part 3) Matrix 和 drawBitmapMesh

本节引言: 在Canvas的API文档中,我们看到这样一个方法:drawBitmap(Bitmap bitmap, Matrix matrix, Paint paint) 这个Matrix可是有大文章的,前面我们在学Paint的API中的ColorFilter中曾讲过ColorMatrix 颜色矩阵,一个4…...

基于Ubuntu 22.04 编译chip-tool工具

前言 编译过程有点曲折,做下记录,过程中,有参考别人写的博客,也看github 官方介绍,终于跑通了~ 环境说明: 首先需要稳定的梯子,可以访问“外网”ubuntu 环境,最终成功实验在Ubunt…...

opencv-17 脸部打码及解码

使用掩模和按位运算方式实现的对脸部打码、解码实例 代码如下: import cv2 import numpy as np #读取原始载体图像 lenacv2.imread("lena.png",0) #读取原始载体图像的 shape 值 r,clena.shape masknp.zeros((r,c),dtypenp.uint8) mask[220:400,250:350…...

JVM分享

JVM分享 官网:https://docs.oracle.com/javase/specs/jvms/se8/html/index.html Java代码的执行流程 我们编写完之后的java文件如果要运行,java文件会编译成class文件,在jvm中运行时ClassLoader会加载class文件,加载进来之后&a…...

Apache Dubbo CVE-2021-36162 挖掘过程

01 漏洞背景 发现该漏洞的起因是在分析 CVE-2021-30181 的脚本注入补丁的时候,意外发现了几个已被修复的 yaml 反序列化漏洞,还以为是未公开的Nday,查询后发现其实对应的是 CVE-2021-30180 漏洞的修复代码。通过查看补丁可以知道&#xff0c…...

SpringBoot-17-MyBatis动态SQL标签之常用标签

文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...

PHP和Node.js哪个更爽?

先说结论,rust完胜。 php:laravel,swoole,webman,最开始在苏宁的时候写了几年php,当时觉得php真的是世界上最好的语言,因为当初活在舒适圈里,不愿意跳出来,就好比当初活在…...

Oracle查询表空间大小

1 查询数据库中所有的表空间以及表空间所占空间的大小 SELECTtablespace_name,sum( bytes ) / 1024 / 1024 FROMdba_data_files GROUP BYtablespace_name; 2 Oracle查询表空间大小及每个表所占空间的大小 SELECTtablespace_name,file_id,file_name,round( bytes / ( 1024 …...

从零实现STL哈希容器:unordered_map/unordered_set封装详解

本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说&#xff0c;直接开始吧&#xff01; 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...

【HTML-16】深入理解HTML中的块元素与行内元素

HTML元素根据其显示特性可以分为两大类&#xff1a;块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...

ios苹果系统,js 滑动屏幕、锚定无效

现象&#xff1a;window.addEventListener监听touch无效&#xff0c;划不动屏幕&#xff0c;但是代码逻辑都有执行到。 scrollIntoView也无效。 原因&#xff1a;这是因为 iOS 的触摸事件处理机制和 touch-action: none 的设置有关。ios有太多得交互动作&#xff0c;从而会影响…...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”

2025年#高考 将在近日拉开帷幕&#xff0c;#AI 监考一度冲上热搜。当AI深度融入高考&#xff0c;#时间同步 不再是辅助功能&#xff0c;而是决定AI监考系统成败的“生命线”。 AI亮相2025高考&#xff0c;40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕&#xff0c;江西、…...

Angular微前端架构:Module Federation + ngx-build-plus (Webpack)

以下是一个完整的 Angular 微前端示例&#xff0c;其中使用的是 Module Federation 和 npx-build-plus 实现了主应用&#xff08;Shell&#xff09;与子应用&#xff08;Remote&#xff09;的集成。 &#x1f6e0;️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...

Spring是如何解决Bean的循环依赖:三级缓存机制

1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间‌互相持有对方引用‌,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...

AirSim/Cosys-AirSim 游戏开发(四)外部固定位置监控相机

这个博客介绍了如何通过 settings.json 文件添加一个无人机外的 固定位置监控相机&#xff0c;因为在使用过程中发现 Airsim 对外部监控相机的描述模糊&#xff0c;而 Cosys-Airsim 在官方文档中没有提供外部监控相机设置&#xff0c;最后在源码示例中找到了&#xff0c;所以感…...