当前位置: 首页 > news >正文

NLP(六十二)HuggingFace中的Datasets使用

  Datasets库是HuggingFace生态系统中一个重要的数据集库,可用于轻松地访问和共享数据集,这些数据集是关于音频、计算机视觉、以及自然语言处理等领域。Datasets 库可以通过一行来加载一个数据集,并且可以使用 Hugging Face 强大的数据处理方法来快速准备好你的数据集。在 Apache Arrow 格式的支持下,通过 zero-copy read 来处理大型数据集,而没有任何内存限制,从而实现最佳速度和效率。

  当需要微调模型的时候,需要对数据集进行以下操作:

  1. 数据集加载:下载、加载数据集
  2. 数据集预处理:使用Dataset.map() 预处理数据
  3. 数据集评估指标:加载和计算指标

  可以在HuggingFace官网来搜共享索数据集:https://huggingface.co/datasets​ 。本文中使用的主要数据集为squad数据集,其在HuggingFace网站上的数据前几行如下:

squad数据集前几行

加载数据

  • 加载Dataset数据集

  Dataset数据集可以是HuggingFace Datasets网站上的数据集或者是本地路径对应的数据集,也可以同时加载多个数据集。

  以下是加载英语阅读理解数据集squad, 该数据集的网址为:https://huggingface.co/datasets/squad ,也是本文中使用的主要数据集。

import datasets# 加载单个数据集
raw_datasets = datasets.load_dataset('squad')
# 加载多个数据集
raw_datasets = datasets.load_dataset('glue', 'mrpc')
  • 从文件中加载数据

  支持csv, tsv, txt, json, jsonl等格式的文件

from datasets import load_datasetdata_files = {"train": "./data/sougou_mini/train.csv", "test": "./data/sougou_mini/test.csv"}
drug_dataset = load_dataset("csv", data_files=data_files, delimiter=",")
  • 从Dataframe中加载数据
import pandas as pd
from datasets import Dataset my_dict = {"a": [1, 2, 3], "b": ['A', 'B', 'C']} 
dataset1 = Dataset.from_dict(my_dict) df = pd.DataFrame(my_dict) 
dataset2 = Dataset.from_pandas(df)

查看数据

  • 数据结构

  数据结构包括:

  • 数据集的划分:train,valid,test数据集
  • 数据集的数量
  • 数据集的feature

  squad数据的数据结构如下:

DatasetDict({train: Dataset({features: ['id', 'title', 'context', 'question', 'answers'],num_rows: 87599})validation: Dataset({features: ['id', 'title', 'context', 'question', 'answers'],num_rows: 10570})
})
  • 数据切分
import datasetsraw_dataset = datasets.load_dataset('squad')# 获取某个划分数据集,比如train
train_dataset = raw_dataset['train']
# 获取前10条数据
head_dataset = train_dataset.select(range(10))
# 获取随机10条数据
shuffle_dataset = train_dataset.shuffle(seed=42).select(range(10))
# 数据切片
slice_dataset = train_dataset[10:20]

更多特性

  • 数据打乱(shuffle)

  shuffle的功能是打乱datasets中的数据,其中seed是设置打乱的参数,如果设置打乱的seed是相同的,那我们就可以得到一个完全相同的打乱结果,这样用相同的打乱结果才能重复的进行模型试验。

import datasetsraw_dataset = datasets.load_dataset('squad')
# 打乱数据集
shuffle_dataset = train_dataset.shuffle(seed=42)
  • 数据流(stream)

  stream的功能是将数据集进行流式化,可以不用在下载整个数据集的情况下使用该数据集。这在以下场景中特别有用:

  1. 你不想等待整个庞大的数据集下载完毕
  2. 数据集大小超过了你计算机的可用硬盘空间
  3. 你想快速探索数据集的少数样本
from datasets import load_datasetdataset = load_dataset('oscar-corpus/OSCAR-2201', 'en', split='train', streaming=True)
print(next(iter(dataset)))
  • 数据列重命名(rename columns)

  数据集支持对列重命名。下面的代码将squad数据集中的context列重命名为text:

from datasets import load_datasetsquad = load_dataset('squad')
squad = squad.rename_column('context', 'text')
  • 数据丢弃列(drop columns)

  数据集支持对列进行丢弃,在删除一个或多个列时,向remove_columns()函数提供要删除的列名。单个列删除传入列名,多个列删除传入列名的列表。下面的代码将squad数据集中的id列丢弃:

from datasets import load_datasetsquad = load_dataset('squad')
# 删除一个列
squad = squad.remove_columns('id')
# 删除多个列
squad = squad.remove_columns(['title', 'text'])
  • 数据新增列(add new columns)

  数据集支持新增列。下面的代码在squad数据集上新增一列test,内容全为字符串111:

from datasets import load_datasetsquad = load_dataset('squad')
# 新增列
new_train_squad = squad['train'].add_column("test", ['111'] * squad['train'].num_rows)
  • 数据类型转换(cast)

  cast()函数对一个或多个列的特征类型进行转换。这个函数接受你的新特征作为其参数。

from datasets import load_datasetsquad = load_dataset('squad')
# 新增列
new_train_squad = squad['train'].add_column("test", ['111'] * squad['train'].num_rows)
print(new_train_squad.features)
# 转换test列的数据类型
new_features = new_train_squad.features.copy()
new_features["test"] = Value("int64")
new_train_squad = new_train_squad.cast(new_features)
# 输出转换后的数据类型
print(new_train_squad.features)
  • 数据展平(flatten)

  针对嵌套结构的数据类型,可使用flatten()函数将子字段提取到它们自己的独立列中。

from datasets import load_datasetsquad = load_dataset('squad')
flatten_dataset = squad['train'].flatten()
print(flatten_dataset)

输出结果为:

Dataset({features: ['id', 'title', 'context', 'question', 'answers.text', 'answers.answer_start'],num_rows: 87599
})
  • 数据合并(Concatenate Multiple Datasets)

  如果独立的数据集有相同的列类型,那么它们可以被串联起来。用concatenate_datasets()来连接不同的数据集。

from datasets import concatenate_datasets, load_datasetsquad = load_dataset('squad')
squad_v2 = load_dataset('squad_v2')
# 合并数据集
squad_all = concatenate_datasets([squad['train'], squad_v2['train']])
  • 数据过滤(filter)

  filter()函数支持对数据集进行过滤,一般采用lambda函数实现。下面的代码对squad数据集中的训练集的question字段,过滤掉split后长度小于等于10的数据:

from datasets import load_datasetsquad = load_dataset('squad')
filter_dataset = squad['train'].filter(lambda x: len(x["question"].split()) > 10)

输出结果如下:

Dataset({features: ['id', 'title', 'context', 'question', 'answers'],num_rows: 34261
})
  • 数据排序(sort)

  使用sort()对列值根据其数值进行排序。下面的代码是对squad数据集中的训练集按照标题长度进行排序:

from datasets import load_datasetsquad = load_dataset('squad')
# 新增列, title_length, 标题长度
new_train_squad = squad['train'].add_column("title_length", [len(_) for _ in squad['train']['title']])
# 按照title_length排序
new_train_squad = new_train_squad.sort("title_length")
  • 数据格式(set_format)

  set_format()函数改变了一个列的格式,使之与一些常见的数据格式兼容。在类型参数中指定你想要的输出和你想要格式化的列。格式化是即时应用的。支持的数据格式有:None, numpy, torch, tensorflow, pandas, arrow, 如果选择None,就会返回python对象。

  下面的代码将新增标题长度列,并将其转化为numpy格式:

from datasets import load_datasetsquad = load_dataset('squad')
# 新增列, title_length, 标题长度
new_train_squad = squad['train'].add_column("title_length", [len(_) for _ in squad['train']['title']])
# 转换为numpy支持的数据格式
new_train_squad.set_format(type="numpy", columns=["title_length"])
  • 数据指标(load metrics)

  HuggingFace Hub上提供了一系列的评估指标(metrics),前20个指标如下:

from datasets import list_metrics
metrics_list = list_metrics()
print(', '.join(metric for metric in metrics_list[:20]))

输出结果如下:

accuracy, bertscore, bleu, bleurt, brier_score, cer, character, charcut_mt, chrf, code_eval, comet, competition_math, coval, cuad, exact_match, f1, frugalscore, glue, google_bleu, indic_glue

  从Hub中加载一个指标,使用 datasets.load_metric() 命令,比如加载squad数据集的指标:

from datasets import load_metric
metric = load_metric('squad')

  输出结果如下:

Metric(name: "squad", features: {'predictions': {'id': Value(dtype='string', id=None), 'prediction_text': Value(dtype='string', id=None)}, 'references': {'id': Value(dtype='string', id=None), 'answers': Sequence(feature={'text': Value(dtype='string', id=None), 'answer_start': Value(dtype='int32', id=None)}, length=-1, id=None)}}, usage: """
Computes SQuAD scores (F1 and EM).
Args:predictions: List of question-answers dictionaries with the following key-values:- 'id': id of the question-answer pair as given in the references (see below)- 'prediction_text': the text of the answerreferences: List of question-answers dictionaries with the following key-values:- 'id': id of the question-answer pair (see above),- 'answers': a Dict in the SQuAD dataset format{'text': list of possible texts for the answer, as a list of strings'answer_start': list of start positions for the answer, as a list of ints}Note that answer_start values are not taken into account to compute the metric.
Returns:'exact_match': Exact match (the normalized answer exactly match the gold answer)'f1': The F-score of predicted tokens versus the gold answer
Examples:>>> predictions = [{'prediction_text': '1976', 'id': '56e10a3be3433e1400422b22'}]>>> references = [{'answers': {'answer_start': [97], 'text': ['1976']}, 'id': '56e10a3be3433e1400422b22'}]>>> squad_metric = datasets.load_metric("squad")>>> results = squad_metric.compute(predictions=predictions, references=references)>>> print(results){'exact_match': 100.0, 'f1': 100.0}
""", stored examples: 0)

  load_metric还支持分布式计算,本文不再详细讲述。

  load_metric现在已经是老版本了,新版本将用evaluate模块代替,访问网址为:https://github.com/huggingface/evaluate 。

  • 数据映射(map)

  map就是映射,它接收一个函数,Dataset中的每个元素都会被当作这个函数的输入,并将函数返回值作为新的Dataset。常见的map函数的应用是对文本进行tokenize:

from datasets import load_dataset
from transformers import AutoTokenizersquad_dataset = load_dataset('squad')checkpoint = 'bert-base-cased'
tokenizer = AutoTokenizer.from_pretrained(checkpoint)def tokenize_function(sample):return tokenizer(sample['context'], truncation=True, max_length=256)tokenized_dataset = squad_dataset.map(tokenize_function, batched=True)

  输出结果如下:

DatasetDict({train: Dataset({features: ['id', 'title', 'context', 'question', 'answers', 'input_ids', 'token_type_ids', 'attention_mask'],num_rows: 87599})validation: Dataset({features: ['id', 'title', 'context', 'question', 'answers', 'input_ids', 'token_type_ids', 'attention_mask'],num_rows: 10570})
})
  • 数据保存/加载(save to disk/ load from disk)

  使用save_to_disk()来保存数据集,方便在以后重新使用它,使用 load_from_disk()函数重新加载数据集。我们将上面map后的tokenized_dataset数据集进行保存:

tokenized_dataset.save_to_disk("squad_tokenized")

保存后的文件结构如下:

squad_tokenized/
├── dataset_dict.json
├── train
│   ├── data-00000-of-00001.arrow
│   ├── dataset_info.json
│   └── state.json
└── validation├── data-00000-of-00001.arrow├── dataset_info.json└── state.json

  加载数据的代码如下:

from datasets import load_from_disk
reloaded_dataset = load_from_disk("squad_tokenized") 

总结

  本文可作为dataset库的入门,详细介绍了数据集的各种操作,这样方便后续进行模型训练。

参考文献

  1. Datasets: https://www.huaxiaozhuan.com/工具/huggingface_transformer/chapters/2_datasets.html
  2. Huggingface详细入门介绍之dataset库:https://zhuanlan.zhihu.com/p/554678463
  3. Stream: https://huggingface.co/docs/datasets/stream
  4. HuggingFace教程 Datasets基本操作: Process: https://zhuanlan.zhihu.com/p/557032513

相关文章:

NLP(六十二)HuggingFace中的Datasets使用

Datasets库是HuggingFace生态系统中一个重要的数据集库,可用于轻松地访问和共享数据集,这些数据集是关于音频、计算机视觉、以及自然语言处理等领域。Datasets 库可以通过一行来加载一个数据集,并且可以使用 Hugging Face 强大的数据处理方法…...

Windows下基于VSCode搭建C++开发环境(包含整合MinGW64、CMake的详细流程)

最近想写写C,装了VisualStudio 2022,折腾半天。对于一个用惯VSCode的人来说,总感觉IDE太笨重。于是自己网上各种查资料,自己琢磨,搭建了一套Windows下基于VSCode和CMake的C轻量级开发环境。 具体搭建步骤 1. 下载并安…...

springboot+mybatis-plus+vue+element+vant2实现短视频网站,模拟西瓜视频移动端

目录 一、前言 二、管理后台 1.登录 2.登录成功,进入欢迎页 ​编辑 3.视频分类管理 4. 视频标签管理 5.视频管理 6.评论管理 ​编辑 7.用户管理 8.字典管理 (类似于后端的枚举) 9.参数管理(富文本录入) 10.管…...

MySQL学习-第二部分

文章目录 MySQL数据库学习1 表1.1 表中的数据类型1.2 表的创建1.3 表的删除1.4 default设置字段默认值1.5 表结构的修改1.5.1 表名的修改1.5.2 字段名的修改1.5.3 修改字段类型1.5.4 添加字段1.5.5 删除字段1.5.6 表的复制 1.6 表的约束1.6.1 什么是约束?1.6.2 not …...

TortoiseGit 入门指南17:使用子模块

如果你想在自己的代码仓库中嵌入其它仓库,这称为引入子模块(Submodule)。使用右键菜单TortoiseGit - Submodules Add 选项,弹出添加子模块对话框,可以将一个外部仓库嵌入到源代码树的专用子目录中。 Repository&#x…...

谷粒商城篇章5 ---- P173-P192 ---- 检索服务【分布式高级篇二】

目录 1 检索服务 1.1 搭建页面环境 1.1.1 引入依赖 1.1.2 将检索页面放到gulimall-search的src/main/resources/templates/目录下 1.1.3 调整搜索页面 1.1.4 将静态资源放到linux的nginx相关映射目录下/root/docker/nginx/html/static/ search/ 1.1.5 SwitchHosts配置域…...

N位分频器的实现

N位分频器的实现 一、 目的 使用verilog实现n位的分频器,可以是偶数,也可以是奇数 二、 原理 FPGA中n位分频器的工作原理可以简要概括为: 分频器的作用是将输入时钟频率分频,输出低于输入时钟频率的时钟信号。n位分频器可以将输入时钟频率分频2^n倍…...

华为OD真题--分苹果-带答案

有A,B两个同学想要分苹果。A的想法是使用二进制进行,1 1相加不进一位,如(9 5 1001 101 12)。B同学的想法是使用十进制进行,并且进一位。会输入两组数据,一组是苹果总数,一组分别…...

【前端实习评审】对小说详情模块更新的后端接口压力流程进行了人群优化

大家好,本篇文章分享一下【校招VIP】免费商业项目“推推”第一期书籍详情模块 前端同学的开发文档周最佳作品。该同学来自安徽科技学院土木工程专业。本项目亮点难点: 1.热门书籍在更新点的访问压力; 2.书籍更新通知的及时性和有效性&#xf…...

Factorization Machines(论文笔记)

样例一: 一个简单的例子,train是一个字典,先将train进行“one-hot” coding,然后输入相关特征向量,可以预测相关性。 from pyfm import pylibfm from sklearn.feature_extraction import DictVectorizer import numpy as np tra…...

Qt开发(5)——使用QTimer定时触发槽函数

实现效果 软件启动之后,开始计时,到达预定时间后,调用其他类的某个函数。 类的分工 BaseType:软件初始化的调用类 FuncType: 功能函数所在类 具体函数 // FuncType.h class FuncType: public QObject {Q_OBJECT public: publ…...

2023年JAVA最新面试题

2023年JAVA最新面试题 1 JavaWeb基础1.1 HashMap的底层实现原理?1.2 HashMap 和 HashTable的异同?1.5 Collection 和 Collections的区别?1.6 Collection接口的两种区别1.7 ArrayList、LinkedList、Vector者的异同?1.8 String、Str…...

(四)RabbitMQ高级特性(消费端限流、利用限流实现不公平分发、消息存活时间、优先级队列

Lison <dreamlison163.com>, v1.0.0, 2023.06.23 RabbitMQ高级特性&#xff08;消费端限流、利用限流实现不公平分发、消息存活时间、优先级队列 文章目录 RabbitMQ高级特性&#xff08;消费端限流、利用限流实现不公平分发、消息存活时间、优先级队列消费端限流利用限流…...

Vue如何配置eslint

eslint官网: eslint.bootcss.com eslicate如何配置 1、选择新的配置&#xff1a; 2、选择三个必选项 3、再选择Css预处理器 4、之后选择处理器 5、选择是提交的时候就进行保存模式 6、放到独立的配置文件上去 7、最后一句是将自己的数据存为预设 8、配合console不要出现的规则…...

Elasticsearch查询文档

GET查询索引单个文档 GET /索引/_doc/ID GET /ffbf/_doc/123返回结果如下,查到了有数据"found" : true表示 {"_index" : "ffbf","_type" : "_doc","_id" : "123","_version" : 2...

面向对象编程:多态性的理论与实践

文章目录 1. 修饰词和访问权限2. 多态的概念3. 多态的使用现象4. 多态的问题与解决5. 多态的意义 在面向对象编程中&#xff0c;多态是一个重要的概念&#xff0c;它允许不同的对象以不同的方式响应相同的消息。本文将深入探讨多态的概念及其应用&#xff0c;以及在Java中如何实…...

linux:filezilla root密码登陆

问题&#xff1a; 如题 参考&#xff1a; 亚马逊服务器FileZilla登录失败解决办法_亚马逊云 ssh链接秘钥认证不了 ubuntu拒绝root用户ssh远程登录解决办法 总结&#xff1a; vi /etc/ssh/sshd_config&#xff0c;修改配置&#xff1a; PermitRootLogin yes PasswordAuthenticat…...

在nginx上部署nuxt项目

先安装Node.js 我安的18.17.0。 安装完成后&#xff0c;可以使用cmd&#xff0c;winr然cmd进入&#xff0c;测试是否安装成功。安装在哪个盘都可以测试。 测试 输入node -v 和 npm -v&#xff0c;&#xff08;中间有空格&#xff09;出现下图版本提示就是完成了NodeJS的安装…...

嵌入式linux通用spi驱动之spidev使用总结

Linux内核集成了spidev驱动&#xff0c;提供了SPI设备的用户空间API。支持用于半双工通信的read和write访问接口以及用于全双工通信和I/O配置的ioctl接口。使用时&#xff0c;只需将SPI从设备的compatible属性值添加到spidev区动的spidev dt ids[]数组中&#xff0c;即可将该SP…...

【Nodejs】Puppeteer\爬虫实践

puppeteer 文档:puppeteer.js中文文档|puppeteerjs中文网|puppeteer爬虫教程 Puppeteer本身依赖6.4以上的Node&#xff0c;但是为了异步超级好用的async/await&#xff0c;推荐使用7.6版本以上的Node。另外headless Chrome本身对服务器依赖的库的版本要求比较高&#xff0c;c…...

React Native 开发环境搭建(全平台详解)

React Native 开发环境搭建&#xff08;全平台详解&#xff09; 在开始使用 React Native 开发移动应用之前&#xff0c;正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南&#xff0c;涵盖 macOS 和 Windows 平台的配置步骤&#xff0c;如何在 Android 和 iOS…...

边缘计算医疗风险自查APP开发方案

核心目标:在便携设备(智能手表/家用检测仪)部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。 一、技术架构设计 #mermaid-svg-iuNaeeLK2YoFKfao {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...

QMC5883L的驱动

简介 本篇文章的代码已经上传到了github上面&#xff0c;开源代码 作为一个电子罗盘模块&#xff0c;我们可以通过I2C从中获取偏航角yaw&#xff0c;相对于六轴陀螺仪的yaw&#xff0c;qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...

可靠性+灵活性:电力载波技术在楼宇自控中的核心价值

可靠性灵活性&#xff1a;电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中&#xff0c;电力载波技术&#xff08;PLC&#xff09;凭借其独特的优势&#xff0c;正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据&#xff0c;无需额外布…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)

宇树机器人多姿态起立控制强化学习框架论文解析 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架&#xff08;一&#xff09; 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...

python报错No module named ‘tensorflow.keras‘

是由于不同版本的tensorflow下的keras所在的路径不同&#xff0c;结合所安装的tensorflow的目录结构修改from语句即可。 原语句&#xff1a; from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后&#xff1a; from tensorflow.python.keras.lay…...

【C++】纯虚函数类外可以写实现吗?

1. 答案 先说答案&#xff0c;可以。 2.代码测试 .h头文件 #include <iostream> #include <string>// 抽象基类 class AbstractBase { public:AbstractBase() default;virtual ~AbstractBase() default; // 默认析构函数public:virtual int PureVirtualFunct…...

渗透实战PortSwigger靶场:lab13存储型DOM XSS详解

进来是需要留言的&#xff0c;先用做简单的 html 标签测试 发现面的</h1>不见了 数据包中找到了一个loadCommentsWithVulnerableEscapeHtml.js 他是把用户输入的<>进行 html 编码&#xff0c;输入的<>当成字符串处理回显到页面中&#xff0c;看来只是把用户输…...

Axure 下拉框联动

实现选省、选完省之后选对应省份下的市区...

算法打卡第18天

从中序与后序遍历序列构造二叉树 (力扣106题) 给定两个整数数组 inorder 和 postorder &#xff0c;其中 inorder 是二叉树的中序遍历&#xff0c; postorder 是同一棵树的后序遍历&#xff0c;请你构造并返回这颗 二叉树 。 示例 1: 输入&#xff1a;inorder [9,3,15,20,7…...